h_s = str[idx-1500:idx].rfind('helpful') TypeError: 'type' object is not subscriptable 修改代码
时间: 2023-10-22 21:17:47 浏览: 131
这个错误提示表明你尝试对类型对象进行切片操作,而类型对象是不可切片的。这通常是由于变量的类型错误或者变量未被正确地初始化导致的。你需要检查代码中涉及到该变量的所有位置,确保变量的类型和值是正确的。
以下是一个简单的示例代码,演示了如何使用字符串的 find() 方法查找子串,并且避免了上述 TypeError 错误:
```python
# 假设我们要在一个字符串中查找子串 'helpful'
str = "This is a helpful string for testing"
idx = str.find('helpful')
if idx != -1:
# 如果找到了子串,就打印出它在字符串中的位置
print(f"Substring found at index {idx}")
else:
# 如果找不到子串,就打印出提示信息
print("Substring not found")
```
在这个示例代码中,我们首先使用 `find()` 方法查找子串 'helpful' 在字符串 `str` 中的位置,如果找到了这个子串,就打印出它在字符串中的位置;否则,就打印出提示信息。请注意,`find()` 方法返回子串在字符串中的位置,如果找不到子串,就返回 -1。
相关问题
def __init__(self) -> None: self.name = "" self.idx = 0 self.type = None self.classify = None
在这个代码片段中,`__init__` 是Python类的一个特殊方法,用于初始化类的新实例。当你创建一个新的类实例时,这个方法会被自动调用。它定义了一个名为 `RTDETR` 的类,其中包含了一些属性:
1. `self.name`: 用来存储对象名称的变量。
2. `self.idx`: 表示对象索引的变量,默认为0。
3. `self.type`: 存储对象类型的变量,可能与特定任务有关。
4. `self.classify`: 可能是一个分类功能的引用,但具体实现未在给出的代码中明确说明。
如果要创建 `RTDETR` 类的一个实例并设置这些属性,你会这样操作:
```python
class RTDETR:
def __init__(self):
self.name = "" # 初始化名称为空字符串
self.idx = 0 # 初始化索引为0
self.type = None # 初始化类型为None(可能需要根据实际需求赋值)
self.classify = None # 初始化分类功能为None(同样需要实际依赖)
# 创建一个RTDETR实例
model = RTDETR()
```
注意,这里的代码并没有涉及到 `def __init__(self) -> None:` 的部分,因为这部分通常会写在类定义的内部,而上述代码展示了如何在类中定义和初始化这些属性。如果你需要了解更多关于如何自定义类和它的实例化过程,可以查阅相关的Python类和对象教程。
import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码
下面是正确缩进的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义基本循环神经网络模型
class RNNModel(nn.Module):
def __init__(self, rnn_type, input_size, hidden_size, output_size, num_layers=1):
super(RNNModel, self).__init__()
self.rnn_type = rnn_type
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.encoder = nn.Embedding(input_size, hidden_size)
if rnn_type == 'RNN':
self.rnn = nn.RNN(hidden_size, hidden_size, num_layers)
elif rnn_type == 'GRU':
self.rnn = nn.GRU(hidden_size, hidden_size, num_layers)
self.decoder = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
input = self.encoder(input)
output, hidden = self.rnn(input, hidden)
output = output.view(-1, self.hidden_size)
output = self.decoder(output)
return output, hidden
def init_hidden(self, batch_size):
if self.rnn_type == 'RNN':
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
elif self.rnn_type == 'GRU':
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
# 定义数据集
with open('汉语音节表.txt', encoding='utf-8') as f:
chars = f.readline()
chars = list(chars)
idx_to_char = list(set(chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
corpus_indices = [char_to_idx[char] for char in chars]
# 定义超参数
input_size = len(idx_to_char)
hidden_size = 256
output_size = len(idx_to_char)
num_layers = 1
batch_size = 32
num_steps = 5
learning_rate = 0.01
num_epochs = 100
# 定义模型、损失函数和优化器
model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
model.train()
hidden = model.init_hidden(batch_size)
loss = 0
for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps):
optimizer.zero_grad()
hidden = hidden.detach()
output, hidden = model(X, hidden)
loss = criterion(output, Y.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
if epoch % 10 == 0:
print(f"Epoch {epoch}, Loss: {loss.item()}")
```
阅读全文