mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse)

时间: 2024-05-17 19:13:06 浏览: 11
这是一个使用均方误差(Mean Squared Error,MSE)和均方根误差(Root Mean Squared Error,RMSE)评估回归模型性能的代码片段。其中,y_test是测试集的真实值,y_pred是模型预测的值。均方误差是真实值与预测值之间差的平方和的平均值,即: $$MSE = \frac{1}{n}\sum_{i=1}^{n}(y_{test,i} - y_{pred,i})^2$$ 均方根误差是均方误差的平方根,即: $$RMSE = \sqrt{MSE}$$ 其中,n为样本数量。这两个指标都用于评估回归模型的性能,其值越小表示模型的预测结果与真实值之间的误差越小,模型的性能越好。
相关问题

修改和补充下列代码得到十折交叉验证的平均每一折auc值和平均每一折aoc曲线,平均每一折分类报告以及平均每一折混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse)

首先,需要将代码放入循环中进行十折交叉验证。每一折都需要记录相应的分类报告、混淆矩阵、auc值和aoc曲线。以下是修改后的代码: ``` from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, auc from sklearn.model_selection import StratifiedKFold from gcforest.gcforest import GCForest import numpy as np import math min_max_scaler = MinMaxScaler() config = get_config() tree = gcForest(config) X_train = [] X_test = [] y_train = [] y_test = [] X_test_fuzzy = [] y_test_fuzzy = [] y_pred = [] y_pred1 = [] auc_scores = [] aoc_fprs = [] aoc_tprs = [] skf = StratifiedKFold(n_splits=10) for train_id, test_id in skf.split(x, y): X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11) X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1) y_pred_proba = tree.predict_proba(X_test1) auc_score = roc_auc_score(y_test1, y_pred_proba, multi_class='ovr') auc_scores.append(auc_score) fpr, tpr, _ = roc_curve(y_test1, y_pred_proba[:, 1]) aoc_fprs.append(fpr) aoc_tprs.append(tpr) y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_pred1) print("DF Classification Report (10-Fold CV): \n", report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F Classification Report (10-Fold CV): \n", report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('DF RMSE (10-Fold CV):', rmse) print('DF Accuracy (10-Fold CV):', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('DF-F RMSE (10-Fold CV):', rmse) print('DF-F Accuracy (10-Fold CV):', accuracy_score(y_test_fuzzy, y_pred)) mean_auc = np.mean(auc_scores) print("Mean AUC (10-Fold CV): ", mean_auc) mean_fpr = np.mean(aoc_fprs, axis=0) mean_tpr = np.mean(aoc_tprs, axis=0) mean_auc = auc(mean_fpr, mean_tpr) print("Mean AOC (10-Fold CV): ", mean_auc) ``` 在修改后的代码中,`StratifiedKFold`函数被用来进行十折交叉验证。每一折的训练数据和测试数据都是通过`train_id`和`test_id`来确定的。在每一折的训练和测试之后,需要记录相应的分类报告、混淆矩阵、auc值和aoc曲线。最后,需要计算平均每一折的auc值和aoc曲线。

修改和补充下列代码得到十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred))

以下是修改和补充后的代码,实现了十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵: ```python from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc from sklearn.model_selection import StratifiedKFold min_max_scaler = MinMaxScaler() X_train, X_test, y_train, y_test = [], [], [], [] X_train_fuzzy, X_test_fuzzy, y_train_fuzzy, y_test_fuzzy = [], [], [], [] y_pred, y_pred1 = [], [] y_pred_proba, y_pred_proba1 = [], [] config = get_config() tree = gcForest(config) skf = StratifiedKFold(n_splits=10) for train_id, test_id in skf.split(x, y): # split data and normalize X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) # train gcForest tree.fit(X_train1, y_train1) # predict on test set y_pred11 = tree.predict(X_test1) y_pred_proba11 = tree.predict_proba(X_test1) # append predictions and test data y_pred1.append(y_pred11) y_pred_proba1.append(y_pred_proba11) X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) # split fuzzy data and normalize X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) # train gcForest on fuzzy data tree.fit(X_train_fuzzy1, y_train_fuzzy1) # predict on fuzzy test set y_predd = tree.predict(X_test_fuzzy1) y_predd_proba = tree.predict_proba(X_test_fuzzy1) # append predictions and test data y_pred.append(y_predd) y_pred_proba.append(y_predd_proba) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1) # concatenate and convert to categorical y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) # calculate and print average accuracy and RMSE mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred)) # calculate and print average classification report report1 = classification_report(y_test, y_pred1) print("DF", report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F", report) # calculate and print average confusion matrix cm1 = confusion_matrix(y_test.argmax(axis=1), y_pred1.argmax(axis=1)) cm = confusion_matrix(y_test_fuzzy.argmax(axis=1), y_pred.argmax(axis=1)) print('DF Confusion Matrix:') print(cm1) print('DF-F Confusion Matrix:') print(cm) # calculate and print average ROC curve and AUC value fpr1, tpr1, threshold1 = roc_curve(y_test.ravel(), y_pred_proba1.ravel()) fpr, tpr, threshold = roc_curve(y_test_fuzzy.ravel(), y_pred_proba.ravel()) roc_auc1 = auc(fpr1, tpr1) roc_auc = auc(fpr, tpr) print('DF ROC AUC:', roc_auc1) print('DF-F ROC AUC:', roc_auc) # plot average ROC curve plt.title('Receiver Operating Characteristic') plt.plot(fpr1, tpr1, 'b', label = 'DF AUC = %0.2f' % roc_auc1) plt.plot(fpr, tpr, 'g', label = 'DF-F AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ```

相关推荐

def build_sequences(text, window_size): #text:list of capacity x, y = [],[] for i in range(len(text) - window_size): sequence = text[i:i+window_size] target = text[i+1:i+1+window_size] x.append(sequence) y.append(target) return np.array(x), np.array(y) # 留一评估:一组数据为测试集,其他所有数据全部拿来训练 def get_train_test(data_dict, name, window_size=8): data_sequence=data_dict[name][1] train_data, test_data = data_sequence[:window_size+1], data_sequence[window_size+1:] train_x, train_y = build_sequences(text=train_data, window_size=window_size) for k, v in data_dict.items(): if k != name: data_x, data_y = build_sequences(text=v[1], window_size=window_size) train_x, train_y = np.r_[train_x, data_x], np.r_[train_y, data_y] return train_x, train_y, list(train_data), list(test_data) def relative_error(y_test, y_predict, threshold): true_re, pred_re = len(y_test), 0 for i in range(len(y_test)-1): if y_test[i] <= threshold >= y_test[i+1]: true_re = i - 1 break for i in range(len(y_predict)-1): if y_predict[i] <= threshold: pred_re = i - 1 break return abs(true_re - pred_re)/true_re def evaluation(y_test, y_predict): mae = mean_absolute_error(y_test, y_predict) mse = mean_squared_error(y_test, y_predict) rmse = sqrt(mean_squared_error(y_test, y_predict)) return mae, rmse def setup_seed(seed): np.random.seed(seed) # Numpy module. random.seed(seed) # Python random module. os.environ['PYTHONHASHSEED'] = str(seed) # 为了禁止hash随机化,使得实验可复现。 torch.manual_seed(seed) # 为CPU设置随机种子 if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 torch.cuda.manual_seed_all(seed) # if you are using multi-GPU,为所有GPU设置随机种子 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True

随机森林导入数据用kfold分层抽样后用下列画roc_curve曲线三分类python代码mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('FNN深度森林RMSE:', rmse) print('FNN深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) fpr = dict() tpr = dict() roc_auc = dict() for i in range(3): # 遍历三个类别 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred1[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area(方法二) fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred1.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area(方法一) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(3)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(3): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= 3 fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(3), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('DF-F') plt.legend(loc="lower right")

改成三分类代码n_trees = 100 max_depth = 10 forest = [] for i in range(n_trees): idx = np.random.choice(X_train.shape[0], size=X_train.shape[0], replace=True) X_sampled = X_train[idx, :] y_sampled = y_train[idx] X_fuzzy = [] for j in range(X_sampled.shape[1]): if np.median(X_sampled[:, j])> np.mean(X_sampled[:, j]): fuzzy_vals = fuzz.trapmf(X_sampled[:, j], [np.min(X_sampled[:, j]), np.mean(X_sampled[:, j]), np.median(X_sampled[:, j]), np.max(X_sampled[:, j])]) else: fuzzy_vals = fuzz.trapmf(X_sampled[:, j], [np.min(X_sampled[:, j]), np.median(X_sampled[:, j]), np.mean(X_sampled[:, j]), np.max(X_sampled[:, j])]) X_fuzzy.append(fuzzy_vals) X_fuzzy = np.array(X_fuzzy).T tree = RandomForestClassifier(n_estimators=1, max_depth=max_depth) tree.fit(X_fuzzy, y_sampled) forest.append(tree) inputs = keras.Input(shape=(X_train.shape[1],)) x = keras.layers.Dense(64, activation="relu")(inputs) x = keras.layers.Dense(32, activation="relu")(x) outputs = keras.layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) y_pred = np.zeros(y_train.shape) for tree in forest: a = [] for j in range(X_train.shape[1]): if np.median(X_train[:, j]) > np.mean(X_train[:, j]): fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.mean(X_train[:, j]), np.median(X_train[:, j]), np.max(X_train[:, j])]) else: fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.median(X_train[:, j]), np.mean(X_train[:, j]), np.max(X_train[:, j])]) a.append(fuzzy_vals) fuzzy_vals = np.array(a).T y_pred += tree.predict_proba(fuzzy_vals)[:, 1] y_pred /= n_trees model.fit(X_train, y_pred, epochs=10, batch_size=32) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('RMSE:', rmse) print('Accuracy:', accuracy_score(y_test, y_pred))

from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error as MSE from sklearn.metrics import mean_absolute_error as MAE # 从CSV文件中读取数据 data = pd.read_excel('battery.xlsx') # 分离X和y X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 定义基础模型 linear_model = LinearRegression() decision_tree_model = DecisionTreeRegressor(max_depth=5) random_forest_model = RandomForestRegressor(n_estimators=100, max_depth=30, random_state=42) base_model = [linear_model, decision_tree_model, random_forest_model] # 定义AdaBoost回归器 ada_boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=5), n_estimators=100, learning_rate=0.1, random_state=42) # 训练模型 ada_boost.fit(X_train, y_train) # 预测并计算均方误差 y_pred = ada_boost.predict(X_test) print("MAE:", MAE(y_pred, y_test)) print("MSE:", MSE(y_pred, y_test)) print("RMSE:", np.sqrt(MSE(y_pred, y_test))) print("训练集R^2:", ada_boost.score(X_train, y_train)) print("测试集R^2:", ada_boost.score(X_test, y_test)) # 评估预测结果 plt.figure() plt.plot(range(len(y_pred)), y_pred, 'b', label = 'predict') plt.plot(range(len(y_pred)), y_test, 'r', label = 'test') plt.legend(loc = 'upper right') plt.ylabel("SOH") plt.show() 请告诉我这个代码是什么意思

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

从键盘输入一段英文字符串,其中包含多个字母‘h',请编写程序利用正则表达式,将英文字符串中的’h'全部改为‘H’

好的,我可以帮您解决这个问题。 您可以使用 Python 编写一个程序来实现这个功能。具体步骤如下: 1. 首先导入 re 模块,这个模块是 Python 中用于处理正则表达式的模块。 2. 然后定义一个包含英文字符串的变量,例如: text = "This is a string containing multiple h's." 3. 接下来,使用 re.sub() 方法来进行替换操作。re.sub() 方法的第一个参数是正则表达式,第二个参数是替换的字符或字符串,第三个参数是被替换的字符串。在这个例子里,我们需要将所有的小写字母 h 替换成大写字母 H,所以正则表达式可以写成
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

MySQL 什么情况下不会使用到索引

MySQL 不会使用索引的情况主要包括: 1. 查询的数据量太少,全表扫描比使用索引更快; 2. 使用了函数或表达式对索引字段进行运算; 3. 对索引字段进行了类型转换; 4. 索引列上出现了函数或者运算符; 5. 查询语句中使用了 OR 连接多个条件; 6. 查询条件中有 NULL 值; 7. 数据表的数据量过于庞大,索引失去了优势。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩