用python写NSGA2
时间: 2023-09-30 12:04:21 浏览: 146
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种经典的多目标优化算法,可以求解具有多个决策变量和多个目标函数的优化问题。下面是一个用Python实现NSGA-II算法的简单示例:
```python
import random
import math
# 定义一个个体类
class Individual:
def __init__(self, x, y):
self.x = x
self.y = y
self.fitness = [0, 0]
self.rank = 0
self.distance = 0
# 生成初始种群
def generate_population(population_size):
population = []
for i in range(population_size):
x = random.uniform(0, 1)
y = random.uniform(0, 1)
individual = Individual(x, y)
population.append(individual)
return population
# 计算适应度函数
def calculate_fitness(individual):
x = individual.x
y = individual.y
fitness1 = x
fitness2 = (1 + y) / x
individual.fitness = [fitness1, fitness2]
# 非支配排序
def non_dominated_sorting(population):
fronts = []
population_size = len(population)
domination_count = [0] * population_size
dominated_individuals = [[] for i in range(population_size)]
S = [[] for i in range(population_size)]
front = []
for i in range(population_size):
individual = population[i]
for j in range(population_size):
if i == j:
continue
other_individual = population[j]
if individual.fitness[0] > other_individual.fitness[0] and individual.fitness[1] > other_individual.fitness[1]:
dominated_individuals[i].append(j)
elif individual.fitness[0] < other_individual.fitness[0] and individual.fitness[1] < other_individual.fitness[1]:
domination_count[i] += 1
if domination_count[i] == 0:
individual.rank = 1
front.append(i)
S[0].append(i)
fronts.append(front)
i = 0
while len(fronts[i]) > 0:
next_front = []
for j in fronts[i]:
for k in dominated_individuals[j]:
domination_count[k] -= 1
if domination_count[k] == 0:
population[k].rank = i + 2
next_front.append(k)
i += 1
fronts.append(next_front)
return fronts[:-1]
# 计算拥挤度距离
def calculate_crowding_distance(front):
distance = [0] * len(front)
front_size = len(front)
for i in range(2):
fitness_list = [front[j].fitness[i] for j in range(front_size)]
sorted_fitness_index = sorted(range(front_size), key=lambda k: fitness_list[k])
distance[sorted_fitness_index[0]] = math.inf
distance[sorted_fitness_index[-1]] = math.inf
for j in range(1, front_size - 1):
distance[sorted_fitness_index[j]] += (fitness_list[sorted_fitness_index[j + 1]] - fitness_list[sorted_fitness_index[j - 1]]) / (fitness_list[sorted_fitness_index[-1]] - fitness_list[sorted_fitness_index[0]])
for i in range(front_size):
front[i].distance = distance[i]
# 选择操作
def selection(population):
population_size = len(population)
mating_pool = []
for i in range(population_size):
parent1 = tournament_selection(population)
parent2 = tournament_selection(population)
mating_pool.append((parent1, parent2))
return mating_pool
# 锦标赛选择
def tournament_selection(population):
tournament_size = 2
population_size = len(population)
tournament_population = random.sample(population, tournament_size)
best_individual = None
for individual in tournament_population:
if best_individual is None or individual.rank < best_individual.rank or (individual.rank == best_individual.rank and individual.distance > best_individual.distance):
best_individual = individual
return best_individual
# 交叉操作
def crossover(mating_pool, crossover_rate):
offspring_population = []
for parents in mating_pool:
if random.random() < crossover_rate:
offspring1, offspring2 = simulated_binary_crossover(parents)
else:
offspring1, offspring2 = parents
offspring_population.append(offspring1)
offspring_population.append(offspring2)
return offspring_population
# 模拟二进制交叉
def simulated_binary_crossover(parents):
parent1, parent2 = parents
eta = 10
u = random.random()
if u <= 0.5:
beta = (2 * u) ** (1 / (eta + 1))
else:
beta = (1 / (2 * (1 - u))) ** (1 / (eta + 1))
offspring1 = Individual(0, 0)
offspring2 = Individual(0, 0)
offspring1.x = 0.5 * ((1 + beta) * parent1.x + (1 - beta) * parent2.x)
offspring1.y = 0.5 * ((1 + beta) * parent1.y + (1 - beta) * parent2.y)
offspring2.x = 0.5 * ((1 - beta) * parent1.x + (1 + beta) * parent2.x)
offspring2.y = 0.5 * ((1 - beta) * parent1.y + (1 + beta) * parent2.y)
return offspring1, offspring2
# 变异操作
def mutation(offspring_population, mutation_rate):
for individual in offspring_population:
if random.random() < mutation_rate:
polynomial_mutation(individual)
# 多项式变异
def polynomial_mutation(individual):
eta_m = 20
u = random.random()
if u <= 0.5:
delta = (2 * u) ** (1 / (eta_m + 1)) - 1
else:
delta = 1 - (2 * (1 - u)) ** (1 / (eta_m + 1))
x_min = 0
x_max = 1
y_min = 0
y_max = 1
individual.x = max(x_min, min(x_max, individual.x + delta))
individual.y = max(y_min, min(y_max, individual.y + delta))
# NSGA-II算法主函数
def nsga2(population_size, max_generation, crossover_rate, mutation_rate):
# 生成初始种群
population = generate_population(population_size)
# 计算适应度函数
for individual in population:
calculate_fitness(individual)
# 迭代进化
for generation in range(max_generation):
# 非支配排序
fronts = non_dominated_sorting(population)
# 计算拥挤度距离
for i in range(len(fronts)):
calculate_crowding_distance([population[j] for j in fronts[i]])
# 选择操作
mating_pool = selection(population)
# 交叉操作
offspring_population = crossover(mating_pool, crossover_rate)
# 变异操作
mutation(offspring_population, mutation_rate)
# 计算适应度函数
for individual in offspring_population:
calculate_fitness(individual)
# 合并种群
population += offspring_population
# 非支配排序
fronts = non_dominated_sorting(population)
# 选择下一代种群
new_population = []
i = 0
while len(new_population) + len(fronts[i]) <= population_size:
new_population += [population[j] for j in fronts[i]]
i += 1
if len(new_population) < population_size:
remaining_individuals = sorted([population[j] for j in fronts[i]], key=lambda individual: (individual.rank, -individual.distance), reverse=True)
new_population += remaining_individuals[:(population_size - len(new_population))]
population = new_population
# 返回Pareto前沿集合
pareto_front = [population[i] for i in range(len(population)) if population[i].rank == 1]
return pareto_front
```
在这个示例中,我们定义了一个`Individual`类表示一个个体,包括两个决策变量、两个目标函数、非支配排序的等级和拥挤度距离。我们使用`generate_population`函数生成初始种群,使用`calculate_fitness`函数计算适应度函数,使用`non_dominated_sorting`函数进行非支配排序,并使用`calculate_crowding_distance`函数计算拥挤度距离。然后使用`selection`函数进行选择操作,使用`crossover`函数进行交叉操作,使用`mutation`函数进行变异操作。在每次迭代结束后,我们使用非支配排序选择下一代种群,并返回Pareto前沿集合。
阅读全文