clc,clear all,close all; classes={'background','object'}; pixelLabelIDs = [0,255]; % 训练集 trainVol = imageDatastore('data/trainvol'); trainSeg = pixelLabelDatastore('data/trainseg', classes,pixelLabelIDs); % 验证集 valVol = imageDatastore('data/valvol'); valSeg = pixelLabelDatastore('data/valseg', classes,pixelLabelIDs); % UNET网络 numClasses = numel(classes); inputSize = [128, 128, 2]; encoderDepth = 4; lgraph = unetLayers(inputSize, numClasses, 'EncoderDepth', encoderDepth); %训练选项 options = trainingOptions('adam', ... 'InitialLearnRate', 1e-3, ... 'MaxEpochs', 50, ... 'MiniBatchSize', 16, ... 'Shuffle', 'every-epoch', ... 'ValidationData', {valVol, valSeg}, ... 'ValidationFrequency', 10, ... 'Plots','training-progress'); % 训练 trainingData =pixelLabelImageDatastore(trainVol, valSeg); trainedNet = trainNetwork(trainingData, lgraph, options); % Perform segmentation on test data testVol = imread('data/testvol/image1.jpg'); testSeg = semanticseg(testVol, trainedNet);出现Invalid validation data. The ImageDatastore has no labels.原因

时间: 2023-11-26 11:04:21 浏览: 155
可能是由于在 validationData 中使用了 imageDatastore,而不是使用 pixelLabelDatastore。因此,validationData 中没有提供标签数据,导致出现此错误。您可以尝试修改代码,将 validationData 中的 imageDatastore 修改为 pixelLabelDatastore,以提供正确的标签数据。例如: ``` valVol = imageDatastore('data/valvol'); valSeg = pixelLabelDatastore('data/valseg', classes, pixelLabelIDs); validationData = {valVol, valSeg}; ``` 同时,您还需要确保在 trainNetwork 函数中使用正确的 validationData 参数,例如: ``` trainedNet = trainNetwork(trainingData, lgraph, options, 'ValidationData', validationData); ``` 这样就可以正确地提供验证数据和标签数据,避免出现上述错误。
相关问题

clc,clear all,close all; classes=['background','object']; pixelLabelIDs = [0,255]; % 读取训练数据 trainVol = imageDatastore('data/volume'); trainSeg = pixelLabelDatastore('data/segmentation', classes,pixelLabelIDs); % 读取验证数据 valVol = imageDatastore('data/valvol'); valSeg = pixelLabelDatastore('data/valseg', classes,pixelLabelIDs); % 定义UNET模型 unet = unetLayers([512 512 1], 2); % 定义训练参数 options = trainingOptions('adam', ... 'InitialLearnRate', 1e-3, ... 'MaxEpochs', 50, ... 'MiniBatchSize', 8, ... 'ValidationData',{valVol,valSeg}, ... 'Plots','training-progress'); % 开始训练 [unet, info] = trainNetwork(trainVol,trainSeg,unet,options); % 保存训练好的模型 save('unet.mat', 'unet');错在哪

这段代码存在一些问题: 1. 在使用 `pixelLabelDatastore` 函数时,应该将 `classes` 参数设置为一个 cell 数组,而不是一个字符数组。你可以将 `classes=['background','object']` 改为 `classes={'background','object'}`。 2. 在定义 `UNET` 模型时,输入图像的通道数应该是 3,而不是 1。你可以将 `unetLayers([512 512 1], 2)` 改为 `unetLayers([512 512 3], 2)`。 3. 在训练参数中,`ValidationData` 应该是一个 `cell` 数组。你可以将 `ValidationData` 的值改为 `{valVol,valSeg}`。 修改后的代码如下: ``` clc,clear all,close all; classes={'background','object'}; pixelLabelIDs = [0,255]; % 读取训练数据 trainVol = imageDatastore('data/volume'); trainSeg = pixelLabelDatastore('data/segmentation', classes,pixelLabelIDs); % 读取验证数据 valVol = imageDatastore('data/valvol'); valSeg = pixelLabelDatastore('data/valseg', classes,pixelLabelIDs); % 定义UNET模型 unet = unetLayers([512 512 3], 2); % 定义训练参数 options = trainingOptions('adam', ... 'InitialLearnRate', 1e-3, ... 'MaxEpochs', 50, ... 'MiniBatchSize', 8, ... 'ValidationData',{valVol,valSeg}, ... 'Plots','training-progress'); % 开始训练 [unet, info] = trainNetwork(trainVol,trainSeg,unet,options); % 保存训练好的模型 save('unet.mat', 'unet'); ```

clc;clear all ;close all; xpipei=zeros(19,21);%定义变量。变量规划 readbmp=du

这段代码实际上是MATLAB的代码。 首先,clc命令用于清除命令窗口的内容,使其变为空白。 clear all命令用于清除MATLAB工作空间中的所有变量和函数。 close all命令用于关闭所有已打开的图形窗口。 xpipei=zeros(19,21); 定义了一个名为xpipei的变量,它是一个19行、21列的零矩阵。 readbmp=du; 定义了一个名为readbmp的变量,它的值是du。 根据代码的含义,这段代码的作用是: 清除命令窗口的内容,清除工作空间中的所有变量和函数,关闭所有打开的图形窗口。然后定义一个名为xpipei的19行21列的零矩阵,以及一个名为readbmp的变量,其值为du。
阅读全文

相关推荐

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自