简单版的SMO算法实现
时间: 2023-09-09 09:07:24 浏览: 134
SMO算法是一种支持向量机的优化算法,主要用于求解二次规划问题。以下是一个简单版的SMO算法的实现过程:
1. 初始化alpha向量,设置容错率toler和常数C
2. 选择两个alpha进行优化,即选择两个不同的alpha_i和alpha_j(i不等于j)
3. 计算alpha_i和alpha_j的上下界L和H
4. 计算eta,即两个alpha对应样本的内积
5. 更新alpha_j
6. 更新alpha_i
7. 更新b
8. 在所有非边界alpha中选择违反KKT条件最严重的样本,作为第二个alpha_j
9. 重复步骤2-8,直到所有alpha满足KKT条件或达到最大迭代次数
以下是一个简单版的SMO算法的Python实现:
```python
import numpy as np
def simple_SMO(X, y, C, toler, max_iter):
m, n = X.shape
alpha = np.zeros(m)
b = 0
iter = 0
while iter < max_iter:
alpha_pairs_changed = 0
for i in range(m):
f_i = np.sum(alpha * y * X.dot(X[i])) + b
E_i = f_i - y[i]
if (y[i] * E_i < -toler and alpha[i] < C) or (y[i] * E_i > toler and alpha[i] > 0):
j = np.random.choice(list(range(i)) + list(range(i+1, m)))
f_j = np.sum(alpha * y * X.dot(X[j])) + b
E_j = f_j - y[j]
alpha_i_old, alpha_j_old = alpha[i], alpha[j]
if y[i] != y[j]:
L = max(0, alpha[j] - alpha[i])
H = min(C, C + alpha[j] - alpha[i])
else:
L = max(0, alpha[i] + alpha[j] - C)
H = min(C, alpha[i] + alpha[j])
if L == H:
continue
eta = 2.0 * X[i].dot(X[j]) - X[i].dot(X[i]) - X[j].dot(X[j])
if eta >= 0:
continue
alpha[j] -= y[j] * (E_i - E_j) / eta
alpha[j] = min(alpha[j], H)
alpha[j] = max(alpha[j], L)
if abs(alpha[j] - alpha_j_old) < toler:
continue
alpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j])
b1 = b - E_i - y[i] * (alpha[i] - alpha_i_old) * X[i].dot(X[i]) - \
y[j] * (alpha[j] - alpha_j_old) * X[i].dot(X[j])
b2 = b - E_j - y[i] * (alpha[i] - alpha_i_old) * X[i].dot(X[j]) - \
y[j] * (alpha[j] - alpha_j_old) * X[j].dot(X[j])
if 0 < alpha[i] < C:
b = b1
elif 0 < alpha[j] < C:
b = b2
else:
b = (b1 + b2) / 2.0
alpha_pairs_changed += 1
if alpha_pairs_changed == 0:
iter += 1
else:
iter = 0
return alpha, b
```
其中,X是样本特征矩阵,y是样本标签向量,C是惩罚参数,toler是容错率,max_iter是最大迭代次数。函数返回优化后的alpha向量和偏置b。
阅读全文