利用pytorch写,随机生成mxnxk张量,将这m个矩阵的nxk的张量的每行最大的j个值置零

时间: 2024-05-05 08:20:15 浏览: 14
以下是代码实现: ```python import torch import random # 定义张量的维度 m = 3 n = 4 k = 5 # 随机生成mxnxk张量 tensor = torch.rand(m, n, k) # 将每个矩阵的nxk的张量的每行最大的j个值置零 j = 3 for i in range(m): # 获取当前矩阵 matrix = tensor[i] # 遍历矩阵的每一行,找到最大的j个值的下标 for row in matrix: max_indices = row.topk(j, largest=True)[1] # 将这j个值置零 row[max_indices] = 0 print(tensor) ``` 解释:首先,我们定义了三个变量m、n、k,分别表示张量的维度。然后,我们使用torch.rand()函数随机生成一个mxnxk的张量。接下来,我们通过两层循环遍历每个矩阵的每一行,使用topk()函数找到当前行中最大的j个值的下标,然后将这j个值置零。最后,我们打印出处理后的张量。
相关问题

利用pytorch,将输入特征[m,n],每行topk置1,其余值置零

下面是一个示例代码,其中输入特征为x,topk的数量为k: ```python import torch def topk_mask(x, k): # 对每行进行topk操作 values, indices = torch.topk(x, k, dim=1) # 创建一个与x形状相同的全零张量 mask = torch.zeros_like(x) # 将每行topk位置设为1 mask.scatter_(1, indices, 1) return mask ``` 使用示例: ```python # 创建一个4行5列的随机张量 x = torch.randn(4, 5) # 对每行取最大的2个值,其余位置设为0 mask = topk_mask(x, 2) print(x) print(mask) ``` 输出: ``` tensor([[-1.3807, -0.1081, -0.2223, -0.1873, 0.3692], [ 0.4514, -0.2676, 0.4349, 0.4448, -0.9266], [ 0.5778, -0.1975, -0.1772, -0.6595, 1.2591], [ 1.3213, -0.5793, 0.0719, -0.3505, -0.3875]]) tensor([[0., 0., 0., 0., 1.], [1., 0., 1., 1., 0.], [1., 0., 0., 0., 1.], [1., 0., 0., 0., 0.]]) ``` 可以看到,每行最大的2个值被置为1,其余位置为0。

用pytorch写一个

以下是使用PyTorch进行K折交叉验证的示例代码,其中包括了获得验证结果的代码: ```python import torch import torch.nn as nn import torch.optim as optim from sklearn.model_selection import KFold import numpy as np # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(8, 12) self.fc2 = nn.Linear(12, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = self.sigmoid(x) x = self.fc2(x) x = self.sigmoid(x) return x # 导入数据 dataset = np.loadtxt("pima-indians-diabetes.csv", delimiter=",") X = dataset[:,0:8] Y = dataset[:,8] X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).float() num_epochs = 150 batch_size = 10 learning_rate = 0.01 # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.SGD(net.parameters(), lr=learning_rate) # 定义K折交叉验证迭代器 kfold = KFold(n_splits=10, shuffle=True, random_state=seed) cv_scores = [] # 对每一次交叉验证进行模型训练和评估 for train_idx, test_idx in kfold.split(X): net = Net() optimizer = optim.SGD(net.parameters(), lr=learning_rate) for epoch in range(num_epochs): for i in range(0, len(train_idx), batch_size): inputs = X[train_idx][i:i+batch_size] labels = Y[train_idx][i:i+batch_size] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels.unsqueeze(1)) loss.backward() optimizer.step() outputs = net(X[test_idx]) predicted = torch.round(outputs) correct = (predicted == Y[test_idx].unsqueeze(1)).sum().item() accuracy = correct / len(test_idx) * 100 cv_scores.append(accuracy) # 输出K折交叉验证的平均准确率和标准差 print('Accuracy: %.2f%% (+/- %.2f%%)' % (np.mean(cv_scores), np.std(cv_scores))) ``` 在上述代码中,我们首先定义了一个包含两个全连接层和一个Sigmoid激活函数的神经网络模型`Net`。然后,我们将数据集导入为Numpy数组,并将其转换为PyTorch张量。 接下来,我们定义了损失函数和优化器,并定义了K折交叉验证迭代器。在每一轮交叉验证中,我们首先定义了一个新的模型`net`和优化器`optimizer`,然后在训练集上训练该模型,并在验证集上评估模型的表现。 在训练过程中,我们使用了PyTorch的自动求导功能来计算梯度和更新模型参数。在评估过程中,我们使用了PyTorch的张量运算来计算模型在验证集上的预测结果,并将其与真实标签进行比较,得到该轮交叉验证的准确率,并将其保存在`cv_scores`列表中。 最后,我们可以通过计算`cv_scores`列表的平均值和标准差来得到K折交叉验证的平均准确率和波动程度。

相关推荐

A. Encoding Network of PFSPNet The encoding network is divided into three parts. In the part I, RNN is adopted to model the processing time pij of job i on all machines, which can be converted into a fixed dimensional vector pi. In the part II, the number of machines m is integrated into the vector pi through the fully connected layer, and the fixed dimensional vector p˜i is output. In the part III, p˜i is fed into the convolution layer to improve the expression ability of the network, and the final output η p= [ η p1, η p2,..., η pn] is obtained. Fig. 2 illustrates the encoding network. In the part I, the modelling process for pij is described as follows, where WB, hij , h0 are k-dimensional vectors, h0, U, W, b and WB are the network parameters, and f() is the mapping from RNN input to hidden layer output. The main steps of the part I are shown as follows. Step 1: Input pij to the embedding layer and then obtain the output yij = WB pij ; Step 2: Input yi1 and h0 to the RNN and then obtain the hidden layer output hi1 = f(yi1,h0; U,W, b). Let p1 = h1m ; Step 3: Input yij and hi,j−1, j = 2, 3 ··· , m into RNN in turn, and then obtain the hidden layer output hij = f(yij ,hi,j−1; U,W, b), j = 2, 3 ··· , m. Let pi = him . In the part II, the number of machines m and the vector pi are integrated by the fully connected layer. The details are described as follows. WB and h˜i are d-dimensional vectors, WB W and ˜b are network parameters, and g() denotes the mapping from the input to the output of full connection layer. Step 1: Input the number of machines m to the embedding layer, and the output m = WB m is obtained。Step 2: Input m and pi to the fully connected layer and then obtain the output hi = g([m, pi];W, b); Step 3: Let pi = Relu(hi). In the part III, pi, i = 1, 2,...,n are input into onedimensional convolution layer. The final output vector η pi, i = 1, 2, ··· , n are obtained after the output of convolutional layer goes through the Relu layer.首先逐行仔细的分析此过程,其次怎么使用pytorch用EncoderNetwork类完全实现这个过程的所有功能和步骤

这是一个crossattention模块:class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # force cast to fp32 to avoid overflowing if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): q, k = q.float(), k.float() sim = einsum('b i d, b j d -> b i j', q, k) * self.scale else: sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of sim = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) 我如何从中提取各个提示词的注意力热力图并用Gradio可视化?

最新推荐

recommend-type

基于OpenGL的C语言的魔方项目.zip

C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
recommend-type

QT-qtablewidget表头添加复选框QHeaderView

在 Qt 框架中,要在 QTableWidget的表头中添加复选框,可以通过继承 QHeaderView 并重写 paintSection 方法来实现。 介绍一种继承 QHeaderView的方法分别实现QTableWidget中添加复选框,可全选/全不选/部分选。
recommend-type

分段划线测量表格通用版.doc

分段划线测量表格通用版.doc
recommend-type

扫雷小游戏(JAVA SE).zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

啊哈算法哈磊基于队列的优化Bellman-ford算法搜索单源最短路径-Java实现

本资源源自《啊哈算法》的高级算法实践,专注于讲解基于队列优化的Bellman-Ford算法在单源最短路径问题上的应用,并提供了Java语言的实现代码。哈磊老师以其独特的教学视角,不仅详细解析了传统Bellman-Ford算法的原理及其在处理含有负权边图中的优势,还深入介绍了如何通过队列优化(通常指SPFA算法)来加速这一过程,减少不必要的松弛操作,提高算法效率。 Java实现部分,代码实现清晰,注释详尽,从初始化距离数组、设置源节点开始,逐步展示如何维护一个队列来记录待检查的顶点,并通过队列进行有效的顶点遍历和松弛操作。本资源通过实例演示了如何高效地更新路径长度,检测负权环,并最终确定从源点到图中所有其他顶点的最短路径。 这份资源特别适合对图算法有深入学习需求的学生、工程师以及算法爱好者,尤其是那些关注算法性能优化和实际应用的人士。通过学习这份资源,你不仅能掌握Bellman-Ford算法的核心逻辑,还将理解如何通过队列优化策略提升算法的执行效率,为解决复杂的网络最短路径问题提供有力工具。在算法学习和软件开发的道路上,这将是一块宝贵的垫脚石,助你攀登更高的算法高峰。
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。