typedef struct GNode *PtrToGNode; struct GNode{ int Nv; /* Number of vertices */ int Ne; /* Number of edges */ AdjList List; /* adjacency matrix */ }; typedef PtrToGNode Graph; void Unweighted( Graph G, Queue Q, int dist[], int path[], Vertex S ) { Vertex V, W; NodePtr ptr; dist[S] = 0; Enqueue(S, Q); while ( !IsEmpty(Q) ) { V = Dequeue( Q ); for ( ptr=G->List[V].FirstEdge; ptr; ptr=ptr->Next) { W = ptr->AdjV; if ( dist[W] == INFINITY ) { ; path[W] = V; ; } } } }

时间: 2024-02-23 15:57:37 浏览: 46
这段代码定义了一个无权图(图中所有边的权值均为1),并实现了基于BFS的无权图最短路径算法。具体来说,代码中定义了一个`Graph`结构体,包含图的顶点数、边数和邻接表等信息。邻接表`AdjList`是一个数组,每个元素是一个链表,表示从该顶点发出的所有边。 函数`Unweighted`用于计算从源点`S`到图中所有其他顶点的最短路径。该函数的参数包括一个队列`Q`,用于BFS遍历图;一个一维数组`dist[]`,记录源点`S`到每个顶点的最短距离;一个一维数组`path[]`,记录从源点`S`到每个顶点的最短路径上的前驱顶点;以及源点`S`的编号。 在函数的开头,将源点`S`的距离设置为0,并将其入队。然后进入循环,只要队列不为空,就从队列中取出一个顶点`V`,遍历其所有邻接顶点,并更新其距离和路径信息。具体来说,对于`V`的每个邻接点`W`,如果`W`的距离尚未被计算,则将其距离设置为`V`到`W`的距离加1,将其前驱顶点设置为`V`,并将`W`入队,表示需要继续遍历从`W`出发的邻接点。 值得注意的是,代码中使用了一个宏定义`INFINITY`表示距离无穷大,用于判断某个顶点的距离是否已经被计算过。另外,代码中使用了一个链表结构体`Node`表示邻接表中的一条边,包括该边的邻接顶点`AdjV`和下一条边的指针`Next`。
相关问题

试写一算法,判断以邻接表方式存储的有向图中是否存在由顶点Vi到顶点Vj的路径(i-->j)。 【输入形式】 顶点个数:n 边的条数:m 边的有向顶点对: (a,b)…… 待判断定点i,j 【输出形式】 True 或 False 【样例输入】 5 4 1 2 1 3 2 4 3 5 1 5 【样例输出】 True 【样例说明】 【评分标准】 【代码框架】 #include<stdio.h> #include<malloc.h> #define OK 1 #define ERROR 0 #define MAX_VEX_NUM 100 //最大顶点数量 typedef int Status; typedef enum{AG,AN,DG,DN} GKind; //图类型定义 typedef struct ArcNode{ int adjvex; //邻接点数组下标(从0开始) struct ArcNode *nextarc; int weight; }; typedef struct { int vertex; //顶点编号,从1开始 ArcNode *firstarc; }VNode,AdjList[MAX_VEX_NUM]; typedef struct{ AdjList vertices; int vexnum; int arcnum; GKind kind; }ALGraph; Status InitALGraph(ALGraph &G) { } //创建图的邻接表存储结构 //n: 顶点数 //vertices[]:顶点数组 //edges[][]:边数组 //edgesSize:边数目 Status CreateALGraph(ALGraph &G, int n, int vertices[ ], int edges[20][2], int edgesSize) { } //连通图的深度优先搜索 //v0: 起点的数组下标(从0开始) //visited[ ]:访问标志数组 void DFS(ALGraph G, int v0, int visited[]) { } //图的深度优先搜索 int DFSTraverse(ALGraph G) { } // 判断图的两个顶点是否连通,如果连通,返回true, 否则返回false //v: 起点的编号(从1开始) //w:终点的编号(从1开始) bool isConnect(ALGraph G, int v, int w) { }

```c++ #include<stdio.h> #include<malloc.h> #define OK 1 #define ERROR 0 #define MAX_VEX_NUM 100 //最大顶点数量 typedef int Status; typedef enum{AG,AN,DG,DN} GKind; //图类型定义 typedef struct ArcNode{ int adjvex; //邻接点数组下标(从0开始) struct ArcNode *nextarc; int weight; }ArcNode; typedef struct VNode{ int vertex; //顶点编号,从1开始 ArcNode *firstarc; }VNode,AdjList[MAX_VEX_NUM]; typedef struct{ AdjList vertices; int vexnum; int arcnum; GKind kind; }ALGraph; Status InitALGraph(ALGraph &G){ G.vexnum = 0; G.arcnum = 0; G.kind = DG; //默认为有向图 for(int i = 0; i < MAX_VEX_NUM; i++){ G.vertices[i].vertex = 0; G.vertices[i].firstarc = NULL; } return OK; } Status CreateALGraph(ALGraph &G, int n, int vertices[], int edges[20][2], int edgesSize){ G.vexnum = n; G.arcnum = edgesSize; for(int i = 0; i < n; i++){ G.vertices[i].vertex = vertices[i]; } for(int i = 0; i < edgesSize; i++){ int v1 = edges[i][0]-1; int v2 = edges[i][1]-1; ArcNode *arc = (ArcNode*)malloc(sizeof(ArcNode)); arc->adjvex = v2; arc->nextarc = G.vertices[v1].firstarc; G.vertices[v1].firstarc = arc; } return OK; } void DFS(ALGraph G, int v0, int visited[]){ visited[v0] = 1; ArcNode *p = G.vertices[v0].firstarc; while(p != NULL){ int w = p->adjvex; if(visited[w] == 0){ DFS(G, w, visited); } p = p->nextarc; } } int DFSTraverse(ALGraph G){ int visited[MAX_VEX_NUM] = {0}; int count = 0; for(int i = 0; i < G.vexnum; i++){ if(visited[i] == 0){ count++; DFS(G, i, visited); } } return count; } bool isConnect(ALGraph G, int v, int w){ int visited[MAX_VEX_NUM] = {0}; int v0 = v-1, w0 = w-1; DFS(G, v0, visited); if(visited[w0] == 1){ return true; } return false; } int main(){ ALGraph G; int n, m, v, w; int vertices[MAX_VEX_NUM]; int edges[20][2]; scanf("%d%d", &n, &m); for(int i = 0; i < n; i++){ scanf("%d", &vertices[i]); } for(int i = 0; i < m; i++){ scanf("%d%d", &edges[i][0], &edges[i][1]); } InitALGraph(G); CreateALGraph(G, n, vertices, edges, m); scanf("%d%d", &v, &w); if(isConnect(G, v, w)){ printf("True\n"); } else{ printf("False\n"); } return 0; } ```

用C语言结构体定义邻接矩阵和邻接表表示图的结构体

### 回答1: 邻接矩阵的结构体定义如下: ```c #define MAX_VERTEX_NUM 100 // 最大顶点数 typedef struct { int vertex[MAX_VERTEX_NUM]; // 顶点数组 int edge[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵 int vertex_num; // 顶点数 int edge_num; // 边数 } AdjMatrix; ``` 邻接表的结构体定义如下: ```c #define MAX_VERTEX_NUM 100 // 最大顶点数 typedef struct ENode *PtrToENode; struct ENode { int adjvex; // 邻接点下标 PtrToENode next; // 指向下一个邻接点的指针 }; typedef struct Vnode { int data; // 顶点信息 PtrToENode first_edge; // 指向第一个邻接点的指针 } AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList adj_list; // 邻接表 int vertex_num; // 顶点数 int edge_num; // 边数 } Graph; ``` ### 回答2: 使用C语言结构体可以定义邻接矩阵和邻接表来表示图的结构。下面是相应的定义: 1. 邻接矩阵结构体: ```c #define MAX_VERTEX_NUM 100 // 顶点的最大数量 // 邻接矩阵的结构体定义 typedef struct { int vertices[MAX_VERTEX_NUM]; // 用于存储顶点信息的数组,可以根据需要扩展 int edges[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 用于存储边信息的二维数组,表示顶点之间的关系 int vertex_num; // 顶点的数量 int edge_num; // 边的数量 } AdjMatrix; ``` 2. 邻接表结构体: ```c #define MAX_VERTEX_NUM 100 // 顶点的最大数量 // 邻接表节点的结构体定义 typedef struct AdjListNode { int vertex; // 顶点信息 struct AdjListNode* next; // 指向下一个邻接节点的指针 } AdjListNode; // 邻接表的结构体定义 typedef struct { AdjListNode* vertices[MAX_VERTEX_NUM]; // 用于存储顶点信息的指针数组,可以根据需要扩展 int vertex_num; // 顶点的数量 int edge_num; // 边的数量 } AdjList; ``` 以上就是用C语言结构体定义邻接矩阵和邻接表表示图的结构体的方法。如有需要,可以根据实际情况对结构体进行扩展和修改。 ### 回答3: 使用C语言可以通过结构体来定义邻接矩阵和邻接表表示图的结构体。 1. 邻接矩阵的结构体定义: ```c #define MAX_SIZE 100 // 定义图的最大节点数 // 定义邻接矩阵的结构体 typedef struct { int vertexNum; // 图的节点个数 int edgeNum; // 图的边个数 int matrix[MAX_SIZE][MAX_SIZE]; // 邻接矩阵存储图的信息 } AdjMatrixGraph; ``` 以上定义了一个名为`AdjMatrixGraph`的结构体,其中包含图的节点个数`vertexNum`、图的边个数`edgeNum`以及一个二维数组`matrix`来存储邻接矩阵。`matrix`数组的行号和列号分别代表图中的节点,而数组中的元素表示节点之间的边的关联关系,若两个节点之间存在边则为1,否则为0。 2. 邻接表的结构体定义: ```c // 定义邻接表中的节点 typedef struct AdjListNode { int dest; // 目标节点的索引 struct AdjListNode* next; // 指向下一个节点的指针 } AdjListNode; // 定义邻接表的结构体 typedef struct { int vertexNum; // 图的节点个数 int edgeNum; // 图的边个数 AdjListNode* array[MAX_SIZE]; // 存储所有节点的链表数组 } AdjListGraph; ``` 以上定义了一个名为`AdjListGraph`的结构体,其中包含图的节点个数`vertexNum`、图的边个数`edgeNum`以及一个`array`数组,该数组的每个元素是一个指向`AdjListNode`类型的指针,用于存储与该节点相连的其他节点的链表。每个`AdjListNode`节点中包含目标节点的索引以及指向下一个节点的指针。 通过使用这两个结构体,我们可以方便地表示和操作图的邻接矩阵和邻接表形式。

相关推荐

最新推荐

recommend-type

1719378276792.jpg

1719378276792.jpg
recommend-type

054ssm-jsp-mysql旅游景点线路网站.zip(可运行源码+数据库文件+文档)

本系统采用了jsp技术,将所有业务模块采用以浏览器交互的模式,选择MySQL作为系统的数据库,开发工具选择eclipse来进行系统的设计。基本实现了旅游网站应有的主要功能模块,本系统有管理员、和会员,管理员权限如下:个人中心、会员管理、景点分类管理、旅游景点管理、旅游线路管理、系统管理;会员权限如下:个人中心、旅游景点管理、旅游线路管理、我的收藏管理等操作。 对系统进行测试后,改善了程序逻辑和代码。同时确保系统中所有的程序都能正常运行,所有的功能都能操作,并且该系统有很好的操作体验,实现了对于景点和会员双赢。 关键词:旅游网站;jsp;Mysql;
recommend-type

基于单片机的篮球赛计时计分器.doc

基于单片机的篮球赛计时计分器.doc
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行