求最佳缝合线的python代码
时间: 2023-11-12 13:11:02 浏览: 119
以下是一些示例代码,用于找到最佳缝合线:
1. 动态规划
```
def find_best_seam(image):
# 计算能量图
energy_map = compute_energy_map(image)
# 初始化路径图
path_map = np.zeros_like(energy_map, dtype=np.int)
# 动态规划
for i in range(1, energy_map.shape[0]):
for j in range(0, energy_map.shape[1]):
# 处理边界情况
if j == 0:
path_map[i][j] = j + np.argmin(energy_map[i-1][j:j+2])
elif j == energy_map.shape[1] - 1:
path_map[i][j] = j - 1 + np.argmin(energy_map[i-1][j-1:j+1])
else:
path_map[i][j] = j - 1 + np.argmin(energy_map[i-1][j-1:j+2])
# 更新能量值
energy_map[i][j] += energy_map[i-1][path_map[i][j]]
# 找出最佳缝合线
seam = []
j = np.argmin(energy_map[-1])
for i in range(path_map.shape[0]-1, -1, -1):
seam.append((i, j))
j = path_map[i][j]
seam.reverse()
return seam
```
2. 拓扑排序
```
def find_best_seam(image):
# 计算能量图
energy_map = compute_energy_map(image)
# 构建图
graph = build_graph(energy_map)
# 拓扑排序
topo_order = topo_sort(graph)
# 初始化路径图和能量值
path_map = np.zeros_like(energy_map, dtype=np.int)
energy = np.zeros_like(energy_map)
energy[0] = energy_map[0]
# 计算最佳缝合线
for node in topo_order:
if node[0] == 0:
continue
energy[node] = energy_map[node] + np.min([energy[pred] for pred in graph[node]])
path_map[node] = graph[node][np.argmin([energy[pred] for pred in graph[node]])][1]
seam = []
j = np.argmin(energy[-1])
for i in range(path_map.shape[0]-1, -1, -1):
seam.append((i, j))
j = path_map[i][j]
seam.reverse()
return seam
```
3. 双向动态规划
```
def find_best_seam(image):
# 计算能量图
energy_map = compute_energy_map(image)
# 初始化路径图和能量值
path_map = np.zeros_like(energy_map, dtype=np.int)
energy = np.zeros_like(energy_map)
energy[0] = energy_map[0]
# 双向动态规划
for i in range(1, energy_map.shape[0]):
for j in range(1, energy_map.shape[1]-1):
energy[i][j] = energy_map[i][j] + np.min([energy[i-1][j-1:j+2]])
path_map[i][j] = j - 1 + np.argmin(energy[i-1][j-1:j+2])
energy[i][0] = energy_map[i][0] + np.min([energy[i-1][0], energy[i-1][1]])
path_map[i][0] = np.argmin([energy[i-1][0], energy[i-1][1]])
j = energy_map.shape[1] - 1
energy[i][j] = energy_map[i][j] + np.min([energy[i-1][j-1:j+1]])
path_map[i][j] = j - 1 + np.argmin(energy[i-1][j-1:j+1])
# 找出最佳缝合线
seam = []
j = np.argmin(energy[-1])
for i in range(path_map.shape[0]-1, -1, -1):
seam.append((i, j))
j = path_map[i][j]
seam.reverse()
return seam
```
阅读全文