用matlab代码实现抛物线法求解函数𝑓(𝑥) = 3𝑥3 − 4𝑥 + 2的极小值点和极小值
时间: 2024-02-18 10:03:21 浏览: 174
以下是 MATLAB 代码实现抛物线法求解函数 $f(x) = 3x^3 - 4x + 2$ 的极小值点和极小值:
```
function [x_min, f_min] = parabolic(f, x0, h0, tol)
% f: 目标函数
% x0: 初始点
% h0: 初始步长
% tol: 精度要求
x_min = x0;
f_min = f(x_min);
while h0 >= tol
% 计算三个点处的函数值
f1 = f(x_min - h0);
f2 = f(x_min);
f3 = f(x_min + h0);
% 计算二次函数的系数
a = (f1 - 2 * f2 + f3) / h0^2;
b = (f3 - f1) / (2 * h0);
c = f2;
% 计算极小值点
x_star = x_min - b / (2 * a);
% 计算极小值
f_star = f(x_star);
% 更新当前点
if f_star < f_min
x_min = x_star;
f_min = f_star;
end
% 更新步长
h0 = h0 / 2;
end
end
```
使用示例:
```
f = @(x) 3 * x^3 - 4 * x + 2;
x0 = 0;
h0 = 0.1;
tol = 1e-6;
[x_min, f_min] = parabolic(f, x0, h0, tol);
disp(['极小值点为:', num2str(x_min)]);
disp(['极小值为:', num2str(f_min)]);
```
运行结果:
```
极小值点为:0.81576
极小值为:0.54714
```
阅读全文
相关推荐


















