在resnet中加入注意力机制的代码
时间: 2024-06-08 09:09:33 浏览: 122
在ResNet中加入注意力机制的方法是使用SE-Net(Squeeze-and-Excitation Network),它可以通过学习一组权重对特征进行动态调整,以增强有用的特征并减少无关的特征。下面是一个简单的SE-Net代码示例:
```python
import tensorflow as tf
def se_block(input_tensor, ratio=8):
channel_axis = 1 if tf.keras.backend.image_data_format() == "channels_first" else -1
filters = input_tensor._keras_shape[channel_axis]
se_shape = (filters, 1, 1) if tf.keras.backend.image_data_format() == 'channels_first' else (1, 1, filters)
se = tf.keras.layers.GlobalAveragePooling2D()(input_tensor)
se = tf.keras.layers.Reshape(se_shape)(se)
se = tf.keras.layers.Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=True)(se)
se = tf.keras.layers.Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=True)(se)
if tf.keras.backend.image_data_format() == 'channels_first':
se = tf.keras.layers.Permute((3, 1, 2))(se)
x = tf.keras.layers.multiply([input_tensor, se])
return x
```
在ResNet中使用SE-Net的方法是将SE-Net添加到ResNet的每个块中,如下所示:
```python
def resnet_block(input_data, filters, kernel_size, strides, use_se=True):
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(input_data)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
if use_se:
x = se_block(x)
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=1, padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
shortcut = input_data
if strides != 1 or filters != shortcut._keras_shape[-1]:
shortcut = tf.keras.layers.Conv2D(filters=filters, kernel_size=1, strides=strides, padding='same')(shortcut)
shortcut = tf.keras.layers.BatchNormalization()(shortcut)
x = tf.keras.layers.add([x, shortcut])
x = tf.keras.layers.ReLU()(x)
return x
```
现在你可以在ResNet中使用SE-Net来增加注意力机制。
阅读全文