resnet34加入注意力机制keras
时间: 2023-07-09 19:53:55 浏览: 215
可以使用Keras中的`Attention`层来为ResNet34加入注意力机制,以下是一个示例代码:
```python
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPooling2D, Flatten, Dense, Add, GlobalAveragePooling2D, Multiply
from tensorflow.keras.layers import Reshape, Permute, multiply, LSTM, Lambda, TimeDistributed, concatenate
from tensorflow.keras import Model
def attention_block(inputs, time_steps):
a = Permute((2,1))(inputs) # 将时间步和特征维度进行交换,方便后续计算
a = Dense(time_steps, activation='softmax')(a) # 经过全连接层后进行softmax操作,得到每个时间步的权重
a = Permute((2,1))(a) # 再将时间步和特征维度进行交换,还原原始维度
a = multiply([inputs, a]) # 将输入和注意力权重相乘得到加权输入
return a
def resnet_block(inputs, filters, kernel_size, strides):
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=1, padding='same')(x)
x = BatchNormalization()(x)
shortcut = Conv2D(filters=filters, kernel_size=1, strides=strides, padding='same')(inputs)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
def ResNet34_attention(input_shape, time_steps):
inputs = Input(shape=input_shape)
x = Conv2D(filters=64, kernel_size=7, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
for i in range(3):
x = resnet_block(x, filters=64, kernel_size=3, strides=1)
x = attention_block(x, time_steps=time_steps)
for i in range(4):
if i==0:
x = resnet_block(x, filters=128, kernel_size=3, strides=2)
else:
x = resnet_block(x, filters=128, kernel_size=3, strides=1)
x = attention_block(x, time_steps=time_steps)
for i in range(6):
if i==0:
x = resnet_block(x, filters=256, kernel_size=3, strides=2)
else:
x = resnet_block(x, filters=256, kernel_size=3, strides=1)
x = attention_block(x, time_steps=time_steps)
for i in range(3):
if i==0:
x = resnet_block(x, filters=512, kernel_size=3, strides=2)
else:
x = resnet_block(x, filters=512, kernel_size=3, strides=1)
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
x = Dense(512, activation='relu')(x)
outputs = Dense(1, activation='sigmoid')(x)
model = Model(inputs=inputs, outputs=outputs)
return model
```
在这个示例代码中,我们定义了一个`attention_block`函数,用于为ResNet34的每个`resnet_block`加入注意力机制。在`ResNet34_attention`函数中,我们先构建了ResNet34的主体结构,然后在第1、2、3、4个阶段的最后一个`resnet_block`后都加入了一个`attention_block`。最后,我们再添加全局平均池化层和全连接层进行分类。
需要注意的是,在`attention_block`函数中,我们使用了`Permute`层将时间步和特征维度进行交换,这是因为我们需要对每个时间步进行softmax计算。计算完成后,我们再将时间步和特征维度交换回来,得到加权输入。
阅读全文