pytorch实现L1正则化的交叉熵损失函数
时间: 2023-02-26 13:52:28 浏览: 124
pytorch 实现cross entropy损失函数计算方式
在PyTorch中,可以使用以下代码实现L1正则化的交叉熵损失函数:
```python
import torch
import torch.nn as nn
def l1_regularization(parameters, lambda_=0.01):
"""Compute L1 regularization loss.
:param parameters: Model parameters
:param lambda_: Regularization strength
:return: L1 regularization loss
"""
l1_reg = 0
for param in parameters:
l1_reg += torch.norm(param, p=1)
return lambda_ * l1_reg
def cross_entropy_loss(output, target):
"""Compute cross entropy loss.
:param output: Model output
:param target: Ground truth target
:return: Cross entropy loss
"""
criterion = nn.CrossEntropyLoss()
return criterion(output, target)
def l1_cross_entropy_loss(output, target, parameters, lambda_=0.01):
"""Compute L1 regularization and cross entropy loss.
:param output: Model output
:param target: Ground truth target
:param parameters: Model parameters
:param lambda_: Regularization strength
:return: L1 regularization and cross entropy loss
"""
l1_loss = l1_regularization(parameters, lambda_)
ce_loss = cross_entropy_loss(output, target)
return l1_loss + ce_loss
```
在训练模型时,可以将这个损失函数传递给优化器。
阅读全文