state.append函数

时间: 2024-05-10 18:20:38 浏览: 3
state.append是Python中列表(list)对象的一个方法,用于在列表末尾添加一个元素。具体用法为: ```python state.append(element) ``` 其中,state是一个列表对象,element是要添加的元素。 例如,以下代码创建了一个空列表state,然后分别使用append方法添加了三个元素: ```python state = [] state.append("California") state.append("Texas") state.append("New York") print(state) # 输出:["California", "Texas", "New York"] ```
相关问题

class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = []

这段代码是一个 PPO 算法中的经验回放(experience replay)类,用于存储和采样交互数据。具体来说,这个类有以下几个成员函数: 1. 构造函数 __init__:初始化经验回放缓存的大小 batch_size,并创建空的列表来存储状态、动作、概率、价值、奖励和完成标志等信息。 2. 采样函数 sample:将经验回放缓存中的数据按照 batch_size 分成若干个 batch,然后随机打乱数据索引,最后返回一个包含所有 batch 的列表。每个 batch 包含一个状态状态列表、一个动作列表、一个概率列表、一个价值列表、一个奖励列表和一个完成标志列表。 3. 存储函数 push:将交互数据(即一个状态 state、一个动作 action、一个概率 probs、一个价值 vals、一个奖励 reward 和一个完成标志 done)存储到经验回放缓存中。 4. 清空函数 clear:清空经验回放缓存,以便下一次使用。 整个经验回放类的作用是存储和采样交互数据,以便训练 PPO 算法时能够从多个交互轮次中有效地学习。其中,采样函数 sample 会将数据随机打乱,以避免过于相关的数据干扰训练。

class TopNHotItems(topSize: Int) extends KeyedProcessFunction[Tuple, ItemViewCount, String] { private var itemState : ListState[ItemViewCount] = _ override def open(parameters: Configuration): Unit = { super.open(parameters) // 命名状态变量的名字和状态变量的类型 val itemsStateDesc = new ListStateDescriptor[ItemViewCount]("itemState-state", classOf[ItemViewCount]) // 从运行时上下文中获取状态并赋值 itemState = getRuntimeContext.getListState(itemsStateDesc) } override def processElement(input: ItemViewCount, context: KeyedProcessFunction[Tuple, ItemViewCount, String]#Context, collector: Collector[String]): Unit = { // 每条数据都保存到状态中 itemState.add(input) // 注册 windowEnd+1 的 EventTime Timer,当触发时,说明收齐了属于windowEnd 窗口的所有商品数据 // 也就是当程序看到 windowend + 1 的水位线 watermark 时,触发 onTimer 回调函数 context.timerService.registerEventTimeTimer(input.windowEnd + 1) } override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Tuple, ItemViewCount, String]#OnTimerContext, out: Collector[String]): Unit = { // 获取收到的所有商品点击量 val allItems: ListBuffer[ItemViewCount] = ListBuffer() import scala.collection.JavaConversions._ for (item <- itemState.get) { allItems += item } // 提前清除状态中的数据,释放空间 itemState.clear() // 按照点击量从大到小排序 val sortedItems = allItems.sortBy(_.count)(Ordering.Long.reverse).take(topSize) // 将排名信息格式化成 String, 便于打印 val result: StringBuilder = new StringBuilder() result.append("******************************\n") result.append("窗口结束时间: ").append(new Timestamp(timestamp - 1)).append("\n") for(i <- sortedItems.indices){ val currentItem: ItemViewCount = sortedItems(i) // e.g. No1: 商品 ID=12224 浏览量 =2413 result.append("No").append(i+1).append(":") .append(" 商品id=").append(currentItem.itemId) .append(" 热门度 =").append(currentItem.count).append("\n") } result.append("******************************") // 控制输出频率,模拟实时滚动结果 Thread.sleep(500) out.collect(result.toString) }

这段代码是什么意思? 这段代码定义了一个KeyedProcessFunction函数,输入参数是ItemViewCount类型的数据,输出参数是String类型的数据。在函数中,定义了一个ListState状态变量itemState,并在open()方法中初始化。在processElement()方法中,每次接收到一个ItemViewCount类型的数据,都将其保存到itemState状态变量中,并注册一个定时器,定时器的触发时间是当前ItemViewCount数据所属的窗口结束时间+1。 在onTimer()方法中,当定时器触发时,首先从itemState状态变量中获取所有的ItemViewCount数据,并清空itemState状态变量。然后按照点击量从大到小排序,取出前topSize个热门商品,并将其格式化成字符串输出。最后通过out.collect()方法将结果输出。 这个函数的作用是计算出每个窗口期间内的热门商品排行榜,并输出结果。

相关推荐

import numpy as np import pylab as pl import pandas as pd from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] x21=[] for i in X2: if X2.index(i)<=2927: #两个单元楼的分隔数 x2.append(i) else: x21.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] x31=[] for i in X3: if X3.index(i)<=2927: x3.append(i) else: x31.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] x41=[] for i in X4: if X4.index(i)<=2927: x4.append(i) else: x41.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] x51=[] for i in X5: if X5.index(i)<=2927: x5.append(i) else: x51.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] x61=[] for i in X6: if X6.index(i)<=2927: x6.append(i) else: x61.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] x71=[] for i in X7: if X7.index(i)<=2927: x7.append(i) else: x71.append(i) np.random.seed(42) q=np.array(X1[:2922]) w=np.array(x21[:2922]) e=np.array(x31[:2922]) r=np.array(x41[:2922]) t=np.array(x51[:2922]) p=np.array(x61[:2922]) u=np.array(x71[:2922]) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) alpha = 0.1 # 设置岭回归的惩罚参数 ridge = Ridge(alpha=alpha) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) coef = ridge.coef_ # 计算岭回归的系数 intercept = ridge.intercept_ # 计算岭回归的截距 print('Coefficients:', coef) print('Intercept:', intercept)

import random from collections import deque # 定义状态类 class State: def __init__(self, location, direction, grid): self.location = location # 吸尘器位置坐标 self.direction = direction # 吸尘器方向 self.grid = grid # 环境状态矩阵 # 定义操作符 actions = ['UP', 'DOWN', 'LEFT', 'RIGHT'] movements = { 'UP': (-1, 0), 'DOWN': (1, 0), 'LEFT': (0, -1), 'RIGHT': (0, 1) } def move(state, action): # 根据操作进行移动 row, col = state.location dr, dc = movements[action] new_location = (row + dr, col + dc) new_direction = action new_grid = state.grid.copy() new_grid[row][col] = 0 return State(new_location, new_direction, new_grid) # 实现广度优先搜索算法 def bfs(initial_state): queue = deque([initial_state]) while queue: state = queue.popleft() if is_goal_state(state): return state for action in actions: new_state = move(state, action) queue.append(new_state) return None # 判断是否为目标状态 def is_goal_state(state): for row in state.grid: for cell in row: if cell != 0: return False return True # 构造初始状态 def generate_initial_state(): location = (random.randint(0, 2), random.randint(0, 2)) direction = random.choice(actions) grid = [[1 if random.random() < 0.2 else 0 for _ in range(3)] for _ in range(3)] return State(location, direction, grid) # 运行搜索算法 initial_state = generate_initial_state() goal_state = bfs(initial_state) # 评价性能 def calculate_path_cost(state): path_cost = 0 for row in state.grid: for cell in row: if cell != 0: path_cost += 1 return path_cost def calculate_search_cost(): search_cost = 0 queue = deque([initial_state]) while queue: state = queue.popleft() search_cost += 1 if is_goal_state(state): return search_cost for action in actions: new_state = move(state, action) queue.append(new_state) return search_cost path_cost = calculate_path_cost(goal_state) search_cost = calculate_search_cost() print("目标状态路径代价:", path_cost) print("搜索开销:", search_cost) 错误为:list index out of range 请改正

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、