动态规划法和贪心解决树塔问题
时间: 2023-08-26 13:06:15 浏览: 115
树塔问题是一个经典的动态规划问题,也可以用贪心算法来解决。
动态规划法:
先考虑状态定义。设 $f(i,j)$ 表示从第 $i$ 层第 $j$ 个节点出发的最大路径和。则最终答案为 $\max\limits_{j=1}^n f(1,j)$。状态转移方程为 $f(i,j)=\max(f(i+1,j),f(i+1,j+1))+w(i,j)$,其中 $w(i,j)$ 表示第 $i$ 层第 $j$ 个节点的权值。最后从底层向上递推,得到最终答案。
贪心算法:
从底层向上递推,每一层选择当前能够使路径和最大的节点作为路径的一部分。具体做法是,从当前层的第一个节点开始,比较其左右两个子节点的路径和,选择路径和更大的一个作为下一层的节点,直到递推到顶层。最终答案即为顶层节点的路径和。
相关问题
请简述五种算法策略:分治法、贪心法、动态规划法、回溯法和分支定界法的性质、特点和各自的优势,应用场合以及分析相应的时间复杂度和空间复杂度。
分治法:是一种将原问题拆解成若干个规模更小的子问题,并依此解决子问题,最后合并各个子结果求解原问题的一种算法。该算法具有时间复杂度为指数级别,空间复杂度为指数级别的优点,常用于求解排序、搜索、图论等类型的问题。贪心法:是从当前局部最优解出发,寻找全局最优解的一种算法。其时间复杂度为线性级别,空间复杂度也为线性级别,具有比较高的性能。通常用于求最小生成树、最短路径、最佳装载等问题。动态规划法:是一种将原问题拆解成若干个子问题,并且各个子问题之间存在重叠子问题的算法,具有较高的时间复杂度和空间复杂度。通常用于求解最优化、资源分配、线路规划等问题。回溯法:是一种暴力搜索的算法,具有时间复杂度为指数级别,空间复杂度为线性级别的特点,常用于求解八皇后、汉诺塔等问题。分支定界法:是一种根据下界函数来搜索和剪枝的算法,具有时间复杂度为多项式级别,空间复杂度为线性级别的特点,常用于求解最优化、排列组合等问题。
关于递归与分治、动态规划、贪心策略、回溯法、分支限界法、随机化算法的应用
1. 递归与分治
递归与分治是一种常用的算法设计思想,主要应用于解决一些具有递归结构的问题,如汉诺塔、斐波那契数列等。它的基本思想是将原问题分解成若干个子问题,递归地解决这些子问题,最后将子问题的结果合并成原问题的解。
2. 动态规划
动态规划是一种常用的算法设计思想,主要应用于求解具有最优子结构性质的问题,如背包问题、最长公共子序列问题等。它的基本思想是将问题分解成若干个子问题,并且递归地求解子问题,最后将子问题的解合并成原问题的解。动态规划算法具有子问题重叠和最优子结构的特点,因此可以通过记忆化搜索或者自底向上的方式求解。
3. 贪心策略
贪心策略是一种常用的算法设计思想,主要应用于求解具有贪心选择性质的问题,如霍夫曼编码、最小生成树问题等。它的基本思想是每次选择当前最优的选择,然后将问题规模缩小,重复这个过程直到问题得到解决。贪心策略的正确性通常需要提供一些证明,但是在实际应用中,它往往可以提供有效的解决方案。
4. 回溯法
回溯法是一种常用的算法设计思想,主要应用于求解具有多种选择性质的问题,如八皇后问题、0/1背包问题等。它的基本思想是从问题的某一种状态开始,逐步地搜索所有可能的解,直到找到满足条件的解为止。在搜索过程中,如果发现当前路径不能得到解,就回溯到上一个状态,尝试其他的选择。
5. 分支限界法
分支限界法是一种常用的算法设计思想,主要应用于求解具有多种选择性质的问题,如旅行商问题、图着色问题等。它的基本思想是将问题空间分解成若干个子空间,并通过某种方式对子空间进行排序,然后按照顺序逐个扩展子空间,直到找到满足条件的解为止。在搜索过程中,如果发现某个子空间一定不能得到解,就将其剪枝掉,以减少搜索的时间和空间复杂度。
6. 随机化算法
随机化算法是一种常用的算法设计思想,主要应用于求解一些难以确定最优解的问题,如图最小割问题、模拟退火算法等。它的基本思想是将问题转换成一个随机过程,并利用随机化的方法来搜索可能的解。随机化算法通常可以提供近似解或者概率上的正确性保证,但是需要注意的是,它的效率和正确性可能受到随机数生成器的影响。
阅读全文