def self_attention(x, NUM_FILTER=32): N = int(NUM_FILTER / 8) f = Conv1D(filters = N, kernel_size = 1, adding = 'same')(x) g = Conv1D(filters = N, kernel_size = 1, padding = 'same')(x) h = Conv1D(filters = NUM_FILTER, kernel_size = 1, padding = 'same')(x) f_trans = Permute([2, 1])(f) energy = Lambda(lambda x: K.batch_dot(x[0], x[1]))([g, f_trans]) attention = Activation('softmax')(energy) out = Lambda(lambda x: K.batch_dot(x[0], x[1]))([attention, h]) # out = Conv1D(filters = NUM_FILTER, kernel_size = 1, padding = 'same')(out) out = Combination()([out, x]) return out

时间: 2024-01-15 21:04:11 浏览: 99
这段代码是一个实现自注意力机制的函数`self_attention`,函数接受一个`x`作为输入,以及一个可选的参数`NUM_FILTER`,默认为32。函数的作用是对输入`x`进行一维卷积操作,并在卷积后的特征表示上引入自注意力机制,从而提取输入特征的关键信息。 具体来说,`self_attention`函数的实现包括以下几个步骤: 1. 将`NUM_FILTER`除以8得到一个整数`N`。 2. 使用Keras的Conv1D函数对输入变量`x`进行三次一维卷积操作,得到三个特征表示矩阵,分别为`f`、`g`和`h`。 3. 将`f`矩阵进行转置,得到一个新的矩阵`f_trans`。 4. 使用Lambda函数和Keras的batch_dot函数计算`g`矩阵和`f_trans`矩阵的乘积,得到一个注意力能量矩阵`energy`。 5. 使用Activation函数和softmax激活函数将`energy`矩阵进行归一化,得到注意力权重矩阵`attention`。 6. 使用Lambda函数和Keras的batch_dot函数计算`attention`矩阵和`h`矩阵的加权和,得到最终的特征表示矩阵`out`。 7. 使用Combination层将`out`矩阵和输入变量`x`进行加权相加,得到最终的输出特征表示。 需要注意的是,这段代码中的具体实现可能与不同的上下文和应用场景有关,因此需要结合具体的代码和文档进行理解和使用。
相关问题

下面给出一段详细代码:class CrnModel: def init(self, feature_num): self.feature_num = feature_num self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') model_output = self.structure_model() self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) self.model.summary() def structure_model(self): layer_input = self.input_magnitude layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')( layer_input) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) return layer_output。请你给出详细解释和注释

这是一个使用 TensorFlow 实现的 CRN(Causal Residual Network)模型,用于音频信号处理。下面是对代码的详细注释: ``` class CrnModel: def __init__(self, feature_num): self.feature_num = feature_num # 初始化类的特征数 self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') # 定义输入层,输入维度为 [128, feature_num] model_output = self.structure_model() # 定义模型输出 self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) # 定义完整模型 self.model.summary() # 打印模型概述 def structure_model(self): layer_input = self.input_magnitude # 定义输入层 layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')(layer_input) # 第一层卷积层 layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')(layer_output) # 第二层卷积层 layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')(layer_output) # 第三层卷积层 layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) # 用 1x1 卷积层降维 layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) # 最终输出层,输出维度为 257 return layer_output # 返回最终输出层 ``` 该模型使用了四个卷积层,其中 dilation_rate 表示膨胀率,padding 表示填充方式,kernel_size 表示卷积核大小,filters 表示卷积核数量,activation 表示激活函数。模型输入维度为 [128, feature_num],输出维度为 [128, 257],其中 257 表示频域的维度。最后使用 Keras 的 Model 类定义完整模型,并打印模型概述。

def model(self): num_classes = self.config.get("CNN_training_rule", "num_classes") seq_length = self.config.get("CNN_training_rule", "seq_length") conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") model_input = keras.layers.Input((seq_length,1), dtype='float64') # conv1形状[batch_size, seq_length, conv1_num_filters] conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input) conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1) max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2) full_connect = keras.layers.Dense(hidden_dim)(max_poolinged) droped = keras.layers.Dropout(dropout_keep_prob)(full_connect) relued = keras.layers.ReLU()(droped) model_output = keras.layers.Dense(num_classes, activation="softmax")(relued) model = keras.models.Model(inputs=model_input, outputs=model_output) # model.compile(loss="categorical_crossentropy", # optimizer="adam", # metrics=["accuracy"]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) return model给这段代码每行加上注释

``` def model(self): # 获取配置文件中的参数 num_classes = self.config.get("CNN_training_rule", "num_classes") #分类数 seq_length = self.config.get("CNN_training_rule", "seq_length") #序列长度 conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") #第一层卷积核数量 conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") #第一层卷积核大小 conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") #第二层卷积核数量 conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") #第二层卷积核大小 hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") #全连接层隐藏层大小 dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") #dropout保留率 # 定义模型输入 model_input = keras.layers.Input((seq_length,1), dtype='float64') # 第一层卷积 conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input) # 第二层卷积 conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1) # 全局最大池化 max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2) # 全连接层 full_connect = keras.layers.Dense(hidden_dim)(max_poolinged) # dropout层 droped = keras.layers.Dropout(dropout_keep_prob)(full_connect) # relu激活层 relued = keras.layers.ReLU()(droped) # 输出层 model_output = keras.layers.Dense(num_classes, activation="softmax")(relued) # 定义模型 model = keras.models.Model(inputs=model_input, outputs=model_output) # 编译模型 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 打印模型结构 print(model.summary()) return model ```
阅读全文

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

在深度学习领域,Keras库提供了许多用于构建神经网络的层,其中`keras.layers.Conv1D`是专门用于处理一维数据的卷积层。本文将深入探讨`Conv1D`层中的`kernel_size`参数,以及它如何影响模型的构建和功能。 `kernel...
recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

在TensorFlow库中,`tf.nn.atrous_conv2d`函数用于实现空洞卷积,这是一种特殊形式的卷积操作,能够扩大模型的感受野,同时避免池化带来的信息丢失。空洞卷积(也称为膨胀卷积或带孔卷积)通过在卷积核的元素之间...
recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

在TensorFlow中,`tf.nn.conv1d`和`layers.conv1d`都是用于执行一维卷积操作的函数,但它们在实现细节和使用上存在一些差异。这篇文章将深入探讨这两个函数的区别,并帮助理解它们在构建一维卷积神经网络(1D CNN)...
recommend-type

基于springboot+vue的体育馆管理系统的设计与实现(Java毕业设计,附源码,部署教程).zip

该项目包含完整的前后端代码、数据库脚本和相关工具,简单部署即可运行。功能完善、界面美观、操作简单,具有很高的实际应用价值,非常适合作为Java毕业设计或Java课程设计使用。 所有项目均经过严格调试,确保可运行!下载后即可快速部署和使用。 1 适用场景: 毕业设计 期末大作业 课程设计 2 项目特点: 代码完整:详细代码注释,适合新手学习和使用 功能强大:涵盖常见的核心功能,满足大部分课程设计需求 部署简单:有基础的人,只需按照教程操作,轻松完成本地或服务器部署 高质量代码:经过严格测试,确保无错误,稳定运行 3 技术栈和工具 前端:HTML + Vue.js 后端框架:Spring Boot 开发环境:IntelliJ IDEA 数据库:MySQL(建议使用 5.7 版本,更稳定) 数据库可视化工具:Navicat 部署环境:Tomcat(推荐 7.x 或 8.x 版本),Maven
recommend-type

探索zinoucha-master中的0101000101奥秘

资源摘要信息:"zinoucha:101000101" 根据提供的文件信息,我们可以推断出以下几个知识点: 1. 文件标题 "zinoucha:101000101" 中的 "zinoucha" 可能是某种特定内容的标识符或是某个项目的名称。"101000101" 则可能是该项目或内容的特定代码、版本号、序列号或其他重要标识。鉴于标题的特殊性,"zinoucha" 可能是一个与数字序列相关联的术语或项目代号。 2. 描述中提供的 "日诺扎 101000101" 可能是标题的注释或者补充说明。"日诺扎" 的含义并不清晰,可能是人名、地名、特殊术语或是一种加密/编码信息。然而,由于描述与标题几乎一致,这可能表明 "日诺扎" 和 "101000101" 是紧密相关联的。如果 "日诺扎" 是一个密码或者编码,那么 "101000101" 可能是其二进制编码形式或经过某种特定算法转换的结果。 3. 标签部分为空,意味着没有提供额外的分类或关键词信息,这使得我们无法通过标签来获取更多关于该文件或项目的信息。 4. 文件名称列表中只有一个文件名 "zinoucha-master"。从这个文件名我们可以推测出一些信息。首先,它表明了这个项目或文件属于一个更大的项目体系。在软件开发中,通常会将主分支或主线版本命名为 "master"。所以,"zinoucha-master" 可能指的是这个项目或文件的主版本或主分支。此外,由于文件名中同样包含了 "zinoucha",这进一步确认了 "zinoucha" 对该项目的重要性。 结合以上信息,我们可以构建以下几个可能的假设场景: - 假设 "zinoucha" 是一个项目名称,那么 "101000101" 可能是该项目的某种特定标识,例如版本号或代码。"zinoucha-master" 作为主分支,意味着它包含了项目的最稳定版本,或者是开发的主干代码。 - 假设 "101000101" 是某种加密或编码,"zinoucha" 和 "日诺扎" 都可能是对其进行解码或解密的钥匙。在这种情况下,"zinoucha-master" 可能包含了用于解码或解密的主算法或主程序。 - 假设 "zinoucha" 和 "101000101" 代表了某种特定的数据格式或标准。"zinoucha-master" 作为文件名,可能意味着这是遵循该标准或格式的最核心文件或参考实现。 由于文件信息非常有限,我们无法确定具体的领域或背景。"zinoucha" 和 "日诺扎" 可能是任意领域的术语,而 "101000101" 作为二进制编码,可能在通信、加密、数据存储等多种IT应用场景中出现。为了获得更精确的知识点,我们需要更多的上下文信息和具体的领域知识。
recommend-type

【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例

![【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例](https://img-blog.csdnimg.cn/562b8d2b04d343d7a61ef4b8c2f3e817.png) # 摘要 本文旨在探讨Qt与OpenGL集成的实现细节及其在图形性能优化方面的重要性。文章首先介绍了Qt与OpenGL集成的基础知识,然后深入探讨了在Qt环境中实现OpenGL高效渲染的技术,如优化渲染管线、图形数据处理和渲染性能提升策略。接着,文章着重分析了框选功能的图形性能优化,包括图形学原理、高效算法实现以及交互设计。第四章通过高级案例分析,比较了不同的框选技术,并探讨了构
recommend-type

ffmpeg 指定屏幕输出

ffmpeg 是一个强大的多媒体处理工具,可以用来处理视频、音频和字幕等。要使用 ffmpeg 指定屏幕输出,可以使用以下命令: ```sh ffmpeg -f x11grab -s <width>x<height> -r <fps> -i :<display>.<screen>+<x_offset>,<y_offset> output_file ``` 其中: - `-f x11grab` 指定使用 X11 屏幕抓取输入。 - `-s <width>x<height>` 指定抓取屏幕的分辨率,例如 `1920x1080`。 - `-r <fps>` 指定帧率,例如 `25`。 - `-i
recommend-type

个人网站技术深度解析:Haskell构建、黑暗主题、并行化等

资源摘要信息:"个人网站构建与开发" ### 网站构建与部署工具 1. **Nix-shell** - Nix-shell 是 Nix 包管理器的一个功能,允许用户在一个隔离的环境中安装和运行特定版本的软件。这在需要特定库版本或者不同开发环境的场景下非常有用。 - 使用示例:`nix-shell --attr env release.nix` 指定了一个 Nix 环境配置文件 `release.nix`,从而启动一个专门的 shell 环境来构建项目。 2. **Nix-env** - Nix-env 是 Nix 包管理器中的一个命令,用于环境管理和软件包安装。它可以用来安装、更新、删除和切换软件包的环境。 - 使用示例:`nix-env -if release.nix` 表示根据 `release.nix` 文件中定义的环境和依赖,安装或更新环境。 3. **Haskell** - Haskell 是一种纯函数式编程语言,以其强大的类型系统和懒惰求值机制而著称。它支持高级抽象,并且广泛应用于领域如研究、教育和金融行业。 - 标签信息表明该项目可能使用了 Haskell 语言进行开发。 ### 网站功能与技术实现 1. **黑暗主题(Dark Theme)** - 黑暗主题是一种界面设计,使用较暗的颜色作为背景,以减少对用户眼睛的压力,特别在夜间或低光环境下使用。 - 实现黑暗主题通常涉及CSS中深色背景和浅色文字的设计。 2. **使用openCV生成缩略图** - openCV 是一个开源的计算机视觉和机器学习软件库,它提供了许多常用的图像处理功能。 - 使用 openCV 可以更快地生成缩略图,通过调用库中的图像处理功能,比如缩放和颜色转换。 3. **通用提要生成(Syndication Feed)** - 通用提要是 RSS、Atom 等格式的集合,用于发布网站内容更新,以便用户可以通过订阅的方式获取最新动态。 - 实现提要生成通常需要根据网站内容的更新来动态生成相应的 XML 文件。 4. **IndieWeb 互动** - IndieWeb 是一个鼓励人们使用自己的个人网站来发布内容,而不是使用第三方平台的运动。 - 网络提及(Webmentions)是 IndieWeb 的一部分,它允许网站之间相互提及,类似于社交媒体中的评论和提及功能。 5. **垃圾箱包装/网格系统** - 垃圾箱包装可能指的是一个用于暂存草稿或未发布内容的功能,类似于垃圾箱回收站。 - 网格系统是一种布局方式,常用于网页设计中,以更灵活的方式组织内容。 6. **画廊/相册/媒体类型/布局** - 这些关键词可能指向网站上的图片展示功能,包括但不限于相册、网络杂志、不同的媒体展示类型和布局设计。 7. **标签/类别/搜索引擎** - 这表明网站具有内容分类功能,用户可以通过标签和类别来筛选内容,并且可能内置了简易的搜索引擎来帮助用户快速找到相关内容。 8. **并行化(Parallelization)** - 并行化在网站开发中通常涉及将任务分散到多个处理单元或线程中执行,以提高效率和性能。 - 这可能意味着网站的某些功能被设计成可以同时处理多个请求,比如后台任务、数据处理等。 9. **草稿版本+实时服务器** - 草稿版本功能允许用户保存草稿并能在需要时编辑和发布。 - 实时服务器可能是指网站采用了实时数据同步的技术,如 WebSockets,使用户能够看到内容的实时更新。 ### 总结 上述信息展示了一个人在个人网站开发过程中所涉及到的技术和功能实现,包括了环境配置、主题设计、内容管理和用户体验优化。从使用Nix-shell进行环境隔离和依赖管理到实现一个具有高级功能和良好用户体验的个人网站,每个技术点都是现代Web开发中的关键组成部分。
recommend-type

Qt框选功能的国际化实践:支持多语言界面的核心技术解析

![Qt框选功能的国际化实践:支持多语言界面的核心技术解析](https://opengraph.githubassets.com/1e33120fcc70e1a474ab01c7262f9ee89247dfbff9cf5cb5b767da34e5b70381/LCBTS/Qt-read-file) # 摘要 本文系统地探讨了Qt框架下多语言界面设计与国际化的实现原理和技术细节。首先介绍了Qt国际化框架的基础知识和多语言界面设计的基本原理,包括文本处理、资源文件管理、核心API的应用等。随后,文章详细阐述了设计可翻译用户界面、动态语言切换和界面更新以及测试和调试多语言界面的实践技巧。深入理解
recommend-type

内网如何运行docker pull mysql:5.7

要在内网中运行Docker的pull命令来获取MySQL 5.7镜像,可以按照以下步骤进行操作: 1. 确保在内网中的计算机上安装了Docker。 2. 打开终端或命令提示符,并使用以下命令登录到Docker镜像仓库: ```shell docker login <repository> ``` 将`<repository>`替换为MySQL镜像仓库的地址,例如`mysql`或`docker.io/mysql`。 3. 输入用户名和密码以登录到镜像仓库。 4. 使用以下命令从镜像仓库拉取MySQL 5.7镜像: ```shell docker pull <repository>/my