class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x)这是我加的注意力机制模块的代码,我在主干网络的每层采样模块的最后一层MLP后面再加上了这一层SA模块,运行训练程序的时候报错,提示我在调用这个SA模块时,输入的张量大小是:[16, 512, 1],但是在执行F.conv1d时,weight的大小是[256, 1024, 1],其中1024是权重的输入通道数,这与输入的通道数512不匹配,导致了错误。不知道该怎么解决,你可以帮我修改一下代码以解这个问题吗?决
时间: 2023-11-12 09:08:25 浏览: 80
这个问题的原因是您在实例化SelfAttention时,in_channels参数设置不正确,应该与您的MLP输出的通道数相同。如果您的MLP输出通道数为512,则SelfAttention的in_channels应该也为512。您可以将SelfAttention的初始化函数修改为:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
这样,您就可以在MLP后面添加SelfAttention了。
阅读全文