if img_path: img = cv2.imdecode(fromfile(img_path, dtype=uint8), cv2.IMREAD_COLOR)#彩色 #使用OpenCV库读取指定路径的图像文件,并解码为对应的NumPy数组格式 self.show(img, 400, oriImg) colors, lisencePlates = self.getROI(img) for m in range(len(lisencePlates)): self.show(lisencePlates[m], 40, ROIImg) letters = self.getLetters(lisencePlates[m], colors[m]) results = [] for letter in letters: feature = self.getFeature(letter) result = self.sort(feature, trainingMat, labels, 5) results.append(result) print(result) recogResult = ','.join(results) resultShow.configure(text=recogResult)
时间: 2024-02-14 21:35:40 浏览: 117
这段代码是一个 Python 类中的一个方法,用于处理车牌识别的流程。具体来说,它会读取指定路径的图像文件,解码为对应的 NumPy 数组格式,并进行一系列的处理,最终得到车牌识别的结果。
首先,代码会通过 cv2.imdecode() 函数读取指定路径的图像文件,并解码为彩色图片格式。接着,代码会调用 self.show() 方法,将读取到的图片显示在界面上。然后,代码会调用 self.getROI() 方法,对图片进行车牌的定位和提取,得到一个包含所有车牌的列表 lisencePlates。
接下来,代码会遍历 lisencePlates 中的所有车牌,依次调用 self.show() 方法将车牌显示在界面上,并调用 self.getLetters() 方法提取车牌中的字符。提取过程中,代码会使用 colors 列表记录车牌中每个字符的颜色信息。
对于每个字符,代码会调用 self.getFeature() 方法提取其特征,并调用 self.sort() 方法进行分类。分类过程中,代码会使用训练集的特征矩阵 trainingMat 和标签 labels 进行训练,并选取距离最近的 5 个样本进行分类。分类结果将被记录在 results 列表中。
最后,代码会将 results 中的分类结果拼接成一个字符串 recogResult,并将其显示在界面上。
相关问题
import cv2 import matplotlib.pyplot as plt import numpy as np from skimage.measure import label, regionprops file_url = './data/origin/DJI_0081.jpg' output_url = './DJI_0081_ROI.jpg' def show_img(img, title): cv2.namedWindow(title, cv2.WINDOW_NORMAL) cv2.imshow(title, img) def output_img(img, url): cv2.imwrite(url, img, [int(cv2.IMWRITE_PNG_COMPRESSION), 9]) # 使用2g-r-b分离 src = cv2.imread(file_url) show_img(src, 'src') # 转换为浮点数进行计算 fsrc = np.array(src, dtype=np.float32) / 255.0 (b, g, r) = cv2.split(fsrc) gray = 2 * g - 0.9 * b - 1.1 * r # 求取最大值和最小值 (minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray) # 转换为u8类型,进行otsu二值化 gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8) (thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU) show_img(bin_img, 'bin_img') def find_max_connected_component(binary_img): # 输出二值图像中所有的连通域 img_label, num = label(binary_img, connectivity=1, background=0, return_num=True) # connectivity=1--4 connectivity=2--8 # print('+++', num, img_label) # 输出连通域的属性,包括面积等 props = regionprops(img_label) resMatrix = np.zeros(img_label.shape).astype(np.uint8) # 只保留最大的连通域 max_area = 0 max_index = 0 for i in range(0, len(props)): if props[i].area > max_area: max_area = props[i].area max_index = i tmp = (img_label == max_index + 1).astype(np.uint8) resMatrix += tmp resMatrix *= 255 return resMatrix bin_img = find_max_connected_component(bin_img) show_img(bin_img, 'bin_img') # 得到彩色的图像 (b8, g8, r8) = cv2.split(src) color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img]) output_img(color_img, output_url) show_img(color_img, 'color_img') cv2.waitKey() cv2.destroyAllWindows()
这段代码是用来对一张图片进行处理,找到图片中最大的连通域,并将其保留下来。具体的处理过程如下:
1.读入图片并显示;
2.将图片转换成浮点数类型,方便做计算;
3.使用2g-r-b分离,得到灰度图像;
4.使用minMaxLoc函数找到灰度图像中的最大值和最小值;
5.将灰度图像转换成u8类型,方便做Otsu二值化;
6.使用Otsu二值化将图像进行二值化处理;
7.找到图像中最大的连通域;
8.将连通域保留下来,并输出彩色图像。
需要注意的是,代码中使用了一些第三方库,比如OpenCV和skimage,需要提前安装好。另外,代码中也有一些常量的设置,比如阈值等,可以根据具体需求进行调整。
没有GPU,优化程序class point_cloud_generator(): def init(self, rgb_file, depth_file, save_ply, camera_intrinsics=[312.486, 243.928, 382.363, 382.363]): self.rgb_file = rgb_file self.depth_file = depth_file self.save_ply = save_ply self.rgb = cv2.imread(rgb_file) self.depth = cv2.imread(self.depth_file, -1) print("your depth image shape is:", self.depth.shape) self.width = self.rgb.shape[1] self.height = self.rgb.shape[0] self.camera_intrinsics = camera_intrinsics self.depth_scale = 1000 def compute(self): t1 = time.time() depth = np.asarray(self.depth, dtype=np.uint16).T self.Z = depth / self.depth_scale fx, fy, cx, cy = self.camera_intrinsics X = np.zeros((self.width, self.height)) Y = np.zeros((self.width, self.height)) for i in range(self.width): X[i, :] = np.full(X.shape[1], i) self.X = ((X - cx / 2) * self.Z) / fx for i in range(self.height): Y[:, i] = np.full(Y.shape[0], i) self.Y = ((Y - cy / 2) * self.Z) / fy data_ply = np.zeros((6, self.width * self.height)) data_ply[0] = self.X.T.reshape(-1)[:self.width * self.height] data_ply[1] = -self.Y.T.reshape(-1)[:self.width * self.height] data_ply[2] = -self.Z.T.reshape(-1)[:self.width * self.height] img = np.array(self.rgb, dtype=np.uint8) data_ply[3] = img[:, :, 0:1].reshape(-1)[:self.width * self.height] data_ply[4] = img[:, :, 1:2].reshape(-1)[:self.width * self.height] data_ply[5] = img[:, :, 2:3].reshape(-1)[:self.width * self.height] self.data_ply = data_ply t2 = time.time() print('calcualte 3d point cloud Done.', t2 - t1) def write_ply(self): start = time.time() float_formatter = lambda x: "%.4f" % x points = [] for i in self.data_ply
It that the code is generating a point cloud from an RGB-D image pair. Since you mentioned that you do not have a GPU, one possible optimization could be to use the `numba` library to speed up the computation. Here is how you can modify the code to use `numba`:
1. Import the `numba` library by adding the following line at the top of your code:
```python
import numba
```
2. Add the `@numba.jit(nopython=True)` decorator to the `compute` method to enable `numba` JIT compilation:
```python
@numba.jit(nopython=True)
def compute(self):
# rest of the code
```
3. Modify the `for` loops in the `compute` method to use `numba`'s `prange` function to parallelize the computation across multiple CPU cores:
```python
for i in numba.prange(self.width):
# rest of the code
for i in numba.prange(self.height):
# rest of the code
```
4. Add the `@numba.jit(nopython=True)` decorator to the `write_ply` method as well, since it is also computationally intensive:
```python
@numba.jit(nopython=True)
def write_ply(self):
# rest of the code
```
With these modifications, the `compute` and `write_ply` methods should run faster. However, keep in mind that `numba`'s JIT compilation can take some time during the first function call, so subsequent calls should be faster. Also, note that `numba`'s `prange` function only works with integer indices, so you may need to convert floating-point indices to integers before using them in the loops.
阅读全文
相关推荐

















