if img_path: img = cv2.imdecode(fromfile(img_path, dtype=uint8), cv2.IMREAD_COLOR)#彩色 #使用OpenCV库读取指定路径的图像文件,并解码为对应的NumPy数组格式 self.show(img, 400, oriImg) colors, lisencePlates = self.getROI(img) for m in range(len(lisencePlates)): self.show(lisencePlates[m], 40, ROIImg) letters = self.getLetters(lisencePlates[m], colors[m]) results = [] for letter in letters: feature = self.getFeature(letter) result = self.sort(feature, trainingMat, labels, 5) results.append(result) print(result) recogResult = ','.join(results) resultShow.configure(text=recogResult)

时间: 2024-02-14 07:35:40 浏览: 41
这段代码是一个 Python 类中的一个方法,用于处理车牌识别的流程。具体来说,它会读取指定路径的图像文件,解码为对应的 NumPy 数组格式,并进行一系列的处理,最终得到车牌识别的结果。 首先,代码会通过 cv2.imdecode() 函数读取指定路径的图像文件,并解码为彩色图片格式。接着,代码会调用 self.show() 方法,将读取到的图片显示在界面上。然后,代码会调用 self.getROI() 方法,对图片进行车牌的定位和提取,得到一个包含所有车牌的列表 lisencePlates。 接下来,代码会遍历 lisencePlates 中的所有车牌,依次调用 self.show() 方法将车牌显示在界面上,并调用 self.getLetters() 方法提取车牌中的字符。提取过程中,代码会使用 colors 列表记录车牌中每个字符的颜色信息。 对于每个字符,代码会调用 self.getFeature() 方法提取其特征,并调用 self.sort() 方法进行分类。分类过程中,代码会使用训练集的特征矩阵 trainingMat 和标签 labels 进行训练,并选取距离最近的 5 个样本进行分类。分类结果将被记录在 results 列表中。 最后,代码会将 results 中的分类结果拼接成一个字符串 recogResult,并将其显示在界面上。
相关问题

img = cv2.imdecode(fromfile(img_path, dtype=uint8), cv2.IMREAD_COLOR)

这段代码是使用 OpenCV 库读取指定路径的图像文件,并解码为对应的 NumPy 数组格式。具体来说,cv2.imdecode() 函数接收两个参数:第一个是从文件中读取的二进制数据,第二个是指定解码方式的参数。在这里,我们使用 cv2.IMREAD_COLOR 参数指定解码为彩色图片。解码后的结果存储在 img 变量中,可以通过 NumPy 数组的方式对其进行进一步处理和操作。

img = cv2.imdecode(np.fromfile(self.pic_path, dtype=np.uint8), cv2.IMREAD_COLOR)

这段代码使用 OpenCV 库的 `imdecode()` 函数读取图片文件,并将其解码为 NumPy 数组。 具体解释如下: - `cv2.imdecode()` 是 OpenCV 库中的一个函数,用于解码包含图像数据的缓冲区。 - `np.fromfile(self.pic_path, dtype=np.uint8)` 使用 NumPy 库的 `fromfile()` 函数从文件中读取图像数据,并返回一个 NumPy 数组。 - `dtype=np.uint8` 指定 NumPy 数组的数据类型为无符号 8 位整数,因为图像数据通常是以 8 位整数的形式存储。 - `cv2.IMREAD_COLOR` 是一个标志,指定读取的图像以彩色模式加载。如果不指定该标志,则默认以灰度模式加载图像。 - 最后,将解码后的图像数据存储在变量 `img` 中。

相关推荐

import subprocess import cv2 import numpy as np import time import calendar #从手机获取二进制图片 def get_app_img(): # 从ADB获取屏幕图像 try: output = subprocess.check_output('adb exec-out screencap -p', shell=True) # 处理 output 中的数据 except subprocess.CalledProcessError as e: print('Error:', e) except Exception as e: print('Unexpected error:', e) return output #获取每一张图片的三维数据 def get_imgdecdoe(): output = get_app_img() # print("------output-----{}".format(output)) # 将输出转换为图像 image1 = cv2.imdecode(np.fromstring(output, dtype='uint8'), cv2.IMREAD_COLOR) # print(image) # #缩小图片的大小 image = cv2.resize(image1, (int(1080 / 3), int(2340 / 3))) return image def app_video(): save_path=r"E:\myTool\appium_xiangmu\test_video" ts=calendar.timegm(time.gmtime()) videoname = str(ts)+ ".mp4" save_file_path = '{}\\{}'.format(save_path, videoname) #保存视频 fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 不同视频编码对应不同视频格式(例:'I','4','2','0' 对应avi格式) video = cv2.VideoWriter(save_file_path, fourcc, 5, (int(1080/3),int(2340/3))) try: while True: image = get_imgdecdoe() # 显示图像 cv2.imshow('Screen', image) # 按下ESC键退出循环 if cv2.waitKey(1) == 27: break image=get_imgdecdoe() video.write(image) finally: video.release() #释放 print("________视频处理完毕_______:视频号显示:{}".format(videoname)) cv2.destroyAllWindows() if __name__ == '__main__': app_video(),缺少录制时用户的点击的提示怎么处理,有实例代码吗

没有GPU,优化程序class point_cloud_generator(): def init(self, rgb_file, depth_file, save_ply, camera_intrinsics=[312.486, 243.928, 382.363, 382.363]): self.rgb_file = rgb_file self.depth_file = depth_file self.save_ply = save_ply self.rgb = cv2.imread(rgb_file) self.depth = cv2.imread(self.depth_file, -1) print("your depth image shape is:", self.depth.shape) self.width = self.rgb.shape[1] self.height = self.rgb.shape[0] self.camera_intrinsics = camera_intrinsics self.depth_scale = 1000 def compute(self): t1 = time.time() depth = np.asarray(self.depth, dtype=np.uint16).T self.Z = depth / self.depth_scale fx, fy, cx, cy = self.camera_intrinsics X = np.zeros((self.width, self.height)) Y = np.zeros((self.width, self.height)) for i in range(self.width): X[i, :] = np.full(X.shape[1], i) self.X = ((X - cx / 2) * self.Z) / fx for i in range(self.height): Y[:, i] = np.full(Y.shape[0], i) self.Y = ((Y - cy / 2) * self.Z) / fy data_ply = np.zeros((6, self.width * self.height)) data_ply[0] = self.X.T.reshape(-1)[:self.width * self.height] data_ply[1] = -self.Y.T.reshape(-1)[:self.width * self.height] data_ply[2] = -self.Z.T.reshape(-1)[:self.width * self.height] img = np.array(self.rgb, dtype=np.uint8) data_ply[3] = img[:, :, 0:1].reshape(-1)[:self.width * self.height] data_ply[4] = img[:, :, 1:2].reshape(-1)[:self.width * self.height] data_ply[5] = img[:, :, 2:3].reshape(-1)[:self.width * self.height] self.data_ply = data_ply t2 = time.time() print('calcualte 3d point cloud Done.', t2 - t1) def write_ply(self): start = time.time() float_formatter = lambda x: "%.4f" % x points = [] for i in self.data_ply

import cv2 import matplotlib.pyplot as plt import numpy as np from skimage.measure import label, regionprops file_url = './data/origin/DJI_0081.jpg' output_url = './DJI_0081_ROI.jpg' def show_img(img, title): cv2.namedWindow(title, cv2.WINDOW_NORMAL) cv2.imshow(title, img) def output_img(img, url): cv2.imwrite(url, img, [int(cv2.IMWRITE_PNG_COMPRESSION), 9]) # 使用2g-r-b分离 src = cv2.imread(file_url) show_img(src, 'src') # 转换为浮点数进行计算 fsrc = np.array(src, dtype=np.float32) / 255.0 (b, g, r) = cv2.split(fsrc) gray = 2 * g - 0.9 * b - 1.1 * r # 求取最大值和最小值 (minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray) # 转换为u8类型,进行otsu二值化 gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8) (thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU) show_img(bin_img, 'bin_img') def find_max_connected_component(binary_img): # 输出二值图像中所有的连通域 img_label, num = label(binary_img, connectivity=1, background=0, return_num=True) # connectivity=1--4 connectivity=2--8 # print('+++', num, img_label) # 输出连通域的属性,包括面积等 props = regionprops(img_label) resMatrix = np.zeros(img_label.shape).astype(np.uint8) # 只保留最大的连通域 max_area = 0 max_index = 0 for i in range(0, len(props)): if props[i].area > max_area: max_area = props[i].area max_index = i tmp = (img_label == max_index + 1).astype(np.uint8) resMatrix += tmp resMatrix *= 255 return resMatrix bin_img = find_max_connected_component(bin_img) show_img(bin_img, 'bin_img') # 得到彩色的图像 (b8, g8, r8) = cv2.split(src) color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img]) output_img(color_img, output_url) show_img(color_img, 'color_img') cv2.waitKey() cv2.destroyAllWindows()

coding=UTF-8 from flask import Flask, render_template, request, send_from_directory from werkzeug.utils import secure_filename from iconflow.model.colorizer import ReferenceBasedColorizer from skimage.feature import canny as get_canny_feature from torchvision import transforms from PIL import Image import os import datetime import torchvision import cv2 import numpy as np import torch import einops transform_Normalize = torchvision.transforms.Compose([ transforms.Normalize(0.5, 1.0)]) ALLOWED_EXTENSIONS = set([‘png’, ‘jpg’, ‘jpeg’]) app = Flask(name) train_model = ReferenceBasedColorizer() basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 def allowed_file(filename): return ‘.’ in filename and filename.rsplit(‘.’, 1)[1] in ALLOWED_EXTENSIONS def load_model(log_path=‘/mnt/4T/lzq/IconFlowPaper/checkpoints/normal_model.pt’): global train_model state = torch.load(log_path) train_model.load_state_dict(state[‘net’]) @app.route(“/”, methods=[“GET”, “POST”]) def hello(): if request.method == ‘GET’: return render_template(‘upload.html’) @app.route(‘/upload’, methods=[“GET”, “POST”]) def upload_lnk(): if request.method == ‘GET’: return render_template(‘upload.html’) if request.method == ‘POST’: try: file = request.files['uploadimg'] except Exception: return None if file and allowed_file(file.filename): format = "%Y-%m-%dT%H:%M:%S" now = datetime.datetime.utcnow().strftime(format) filename = now + '_' + file.filename filename = secure_filename(filename) basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 # upload_path = os.path.join(basepath,secure_filename(f.filename)) file.save(os.path.join(basepath, filename)) else: filename = None return filename @app.route(‘/download/string:filename’, methods=[‘GET’]) def download(filename): if request.method == “GET”: if os.path.isfile(os.path.join(basepath, filename)): return send_from_directory(basepath, filename, as_attachment=True) pass def get_contour(img): x = np.array(img) canny = 0 for layer in np.rollaxis(x, -1): canny |= get_canny_feature(layer, 0) canny = canny.astype(np.uint8) * 255 kernel = np.array([ [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], ], dtype=np.uint8) canny = cv2.dilate(canny, kernel) # canny = Image.fromarray(canny) return canny @app.route(‘/embedding//’, methods=[“GET”, “POST”]) def icontran(img, reference): global train_model if request.method == ‘POST’: imgPath = os.path.join(basepath, img) referencePath = os.path.join(basepath, reference) img = cv2.imread(imgPath) if img is None or img.size <= 0: return None contour = get_contour(img).astype(np.float32).copy() contour = 255 - contour reference = cv2.imread(referencePath).astype(np.float32) reference = cv2.cvtColor(reference, cv2.COLOR_BGR2RGB) reference = transform_Normalize(torch.from_numpy(reference).permute(2, 0, 1).unsqueeze(0).float()/ 255.0) contour = transform_Normalize(torch.from_numpy(contour).unsqueeze(0).unsqueeze(0).float()/ 255.0) train_model.eval() transfer = train_model(contour, reference) transfer = transfer.squeeze(0) transfer = (transfer + 0.5).clamp(0, 1).mul_(255).permute(1, 2, 0).type(torch.uint8).numpy() transfer = transfer.numpy() cv2.imwrite(imgPath, transfer) return basepath # success if name == “main”: load_model() app.run(host=‘10.21.16.144’, port=9999, debug=True) 用puthon写一个调用这个服务器的gui

import pickle import numpy as np import os # from scipy.misc import imread def load_CIFAR_batch(filename): with open(filename, 'rb') as f: datadict = pickle.load(f, encoding='bytes') X = datadict[b'data'] Y = datadict[b'labels'] X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): xs = [] ys = [] for b in range(1, 2): f = os.path.join(ROOT, 'data_batch_%d' % (b,)) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch')) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): cifar10_dir = r'D:\daima\cifar-10-python\cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, } def load_models(models_dir): models = {} for model_file in os.listdir(models_dir): with open(os.path.join(models_dir, model_file), 'rb') as f: try: models[model_file] = pickle.load(f)['model'] except pickle.UnpicklingError: continue return models这是一个加载cifar10数据集的函数,如何修改使其能加载mnist数据集,不使用TensorFlow

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩