matlab隐含波动率函数
时间: 2023-08-06 21:17:27 浏览: 168
Matlab中可以使用“blsimpv”函数来计算隐含波动率。这个函数需要输入期权价格、标的资产价格、执行价格、到期时间、无风险利率和期权类型等参数。下面是一个简单的示例代码:
```matlab
S = 100; % 标的资产价格
K = 100; % 执行价格
r = 0.05; % 无风险利率
T = 1; % 到期时间
sigma = 0.2; % 初始猜测波动率
CallPrice = 10; % 期权价格
PutPrice = 5;
OptSpec = 'call'; % 期权类型
% 使用fzero函数求解隐含波动率
IV = fzero(@(x) (blsprice(S, K, r, T, x) - CallPrice), sigma);
% 使用blsimpv函数求解隐含波动率
IV2 = blsimpv(S, K, r, T, CallPrice, [], [], [], OptSpec);
% 输出结果
disp(['使用fzero函数求解的隐含波动率为:' num2str(IV)]);
disp(['使用blsimpv函数求解的隐含波动率为:' num2str(IV2)]);
```
这段代码首先定义了一些参数,然后使用“fzero”函数和“blsimpv”函数分别计算了隐含波动率。其中,“fzero”函数使用了Black-Scholes公式计算期权价格,而“blsimpv”函数直接计算出了隐含波动率。最后,将两种方法计算出的隐含波动率输出到屏幕上。
相关问题
matlab计算期权隐含波动率的代码并画出波动率微笑图
计算期权隐含波动率的代码:
```matlab
function [iv, K] = implied_volatility(S, K, r, T, C, type)
% S: underlying asset price
% K: strike price
% r: risk-free interest rate
% T: time to maturity (in years)
% C: call option price
% type: 'call' or 'put'
tol = 1e-6;
max_iter = 100;
% Define the objective function
if strcmp(type, 'call')
obj_fun = @(sigma) (bsprice(S, K, r, T, sigma, type) - C)^2;
elseif strcmp(type, 'put')
obj_fun = @(sigma) (bsprice(S, K, r, T, sigma, type) - C)^2;
end
% Use fminbnd to find the implied volatility
[iv, ~, exitflag] = fminbnd(obj_fun, tol, 1, optimset('MaxIter', max_iter));
if exitflag ~= 1
warning('Implied volatility not found');
end
end
function [price, delta, gamma, vega, theta] = bsprice(S, K, r, T, sigma, type)
% S: underlying asset price
% K: strike price
% r: risk-free interest rate
% T: time to maturity (in years)
% sigma: volatility
% type: 'call' or 'put'
d1 = (log(S/K) + (r + 0.5*sigma^2)*T) / (sigma*sqrt(T));
d2 = d1 - sigma*sqrt(T);
if strcmp(type, 'call')
price = normcdf(d1)*S - normcdf(d2)*K*exp(-r*T);
delta = normcdf(d1);
gamma = normpdf(d1) / (S*sigma*sqrt(T));
vega = S*normpdf(d1)*sqrt(T);
theta = (-S*normpdf(d1)*sigma/(2*sqrt(T)) - r*K*exp(-r*T)*normcdf(d2)) / 365;
elseif strcmp(type, 'put')
price = normcdf(-d2)*K*exp(-r*T) - normcdf(-d1)*S;
delta = normcdf(d1) - 1;
gamma = normpdf(d1) / (S*sigma*sqrt(T));
vega = S*normpdf(d1)*sqrt(T);
theta = (-S*normpdf(d1)*sigma/(2*sqrt(T)) + r*K*exp(-r*T)*normcdf(-d2)) / 365;
end
end
```
其中,bsprice函数计算了Black-Scholes期权定价公式中的期权价格、希腊字母(delta、gamma、vega和theta),implied_volatility函数使用fminbnd函数寻找隐含波动率。
绘制波动率微笑图的代码:
```matlab
S = 100; % underlying asset price
K = [80:5:120]; % strike prices
r = 0.05; % risk-free interest rate
T = 1; % time to maturity (in years)
C = [20.54 16.06 12.36 9.36 7.05 5.30 4.03 3.11 2.46 1.99 1.68]; % call option prices
P = [1.39 3.10 5.15 7.13 9.08 10.98 12.76 14.34 15.68 16.78 17.63]; % put option prices
% Calculate implied volatilities for call options
iv_call = zeros(size(K));
for i = 1:length(K)
iv_call(i) = implied_volatility(S, K(i), r, T, C(i), 'call');
end
% Calculate implied volatilities for put options
iv_put = zeros(size(K));
for i = 1:length(K)
iv_put(i) = implied_volatility(S, K(i), r, T, P(i), 'put');
end
% Plot implied volatilities as a function of strike price
plot(K, iv_call, 'b-', K, iv_put, 'r-');
xlabel('Strike price');
ylabel('Implied volatility');
title('Volatility smile');
legend('Call options', 'Put options');
```
其中,我们假设有11个不同的行权价,对应的看涨期权和看跌期权的价格分别为C和P。我们使用implied_volatility函数计算每个行权价对应的隐含波动率,并绘制出波动率微笑图。
matlab计算期权隐含波动率的代码
计算期权隐含波动率的代码可以用MATLAB的Financial Toolbox中的blsimpv函数。blsimpv函数是根据Black-Scholes模型计算期权的隐含波动率的。
以下是一个示例代码:
```matlab
% 假设期权信息如下:
S = 100; % 标的资产价格
K = 100; % 行权价格
r = 0.05; % 无风险利率
T = 1; % 到期时间
MarketPrice = 10; % 期权市场价格
% 使用blsimpv函数计算隐含波动率
iv = blsimpv(S, K, r, T, MarketPrice);
% 显示计算结果
fprintf('隐含波动率为 %.4f\n', iv);
```
blsimpv函数的参数含义如下:
- S:标的资产价格
- K:行权价格
- r:无风险利率
- T:到期时间
- MarketPrice:期权市场价格
- iv:隐含波动率
阅读全文