unet训练时创建数据集之后print数据集的图片
时间: 2023-03-29 10:01:24 浏览: 90
可以使用以下代码来打印数据集的图片:
```python
import torch
import torchvision
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
# 加载数据集
dataset = torchvision.datasets.ImageFolder(root='path/to/dataset')
# 创建数据加载器
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True)
# 获取一个批次的数据
batch = next(iter(dataloader))
# 将数据转换为网格形式
grid = make_grid(batch[], nrow=2)
# 显示图片
plt.imshow(grid.permute(1, 2, ))
plt.show()
```
这段代码会将数据集中的一批数据转换为网格形式,并显示出来。
相关问题
PYTHON写UNET代码,其中数据集data,子文件为训练集train,验证集val,训练集子文件为图像文件trainvol,标签文件trainseg,验证集子文件为图像文件valvol,标签文件valseg
下面是一个使用PyTorch实现UNET的示例代码,包括了数据集的读取和处理:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from PIL import Image
import os
# 定义UNET模型
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
self.conv5 = nn.Conv2d(512, 1024, 3, padding=1)
self.upconv6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.conv7 = nn.Conv2d(1024, 512, 3, padding=1)
self.upconv8 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv9 = nn.Conv2d(512, 256, 3, padding=1)
self.upconv10 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv11 = nn.Conv2d(256, 128, 3, padding=1)
self.upconv12 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv13 = nn.Conv2d(128, 64, 3, padding=1)
self.conv14 = nn.Conv2d(64, 2, 1)
def forward(self, x):
conv1_out = nn.functional.relu(self.conv1(x))
conv2_out = nn.functional.relu(self.conv2(conv1_out))
conv3_out = nn.functional.relu(self.conv3(conv2_out))
conv4_out = nn.functional.relu(self.conv4(conv3_out))
conv5_out = nn.functional.relu(self.conv5(conv4_out))
upconv6_out = nn.functional.relu(self.upconv6(conv5_out))
concat7_out = torch.cat([upconv6_out, conv4_out], dim=1)
conv7_out = nn.functional.relu(self.conv7(concat7_out))
upconv8_out = nn.functional.relu(self.upconv8(conv7_out))
concat9_out = torch.cat([upconv8_out, conv3_out], dim=1)
conv9_out = nn.functional.relu(self.conv9(concat9_out))
upconv10_out = nn.functional.relu(self.upconv10(conv9_out))
concat11_out = torch.cat([upconv10_out, conv2_out], dim=1)
conv11_out = nn.functional.relu(self.conv11(concat11_out))
upconv12_out = nn.functional.relu(self.upconv12(conv11_out))
concat13_out = torch.cat([upconv12_out, conv1_out], dim=1)
conv13_out = nn.functional.relu(self.conv13(concat13_out))
conv14_out = self.conv14(conv13_out)
return conv14_out
# 定义数据集类
class MyDataset(Dataset):
def __init__(self, root_dir):
self.root_dir = root_dir
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
self.image_files = sorted(os.listdir(os.path.join(root_dir, "train", "trainvol")))
self.label_files = sorted(os.listdir(os.path.join(root_dir, "train", "trainseg")))
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
image = Image.open(os.path.join(self.root_dir, "train", "trainvol", self.image_files[idx]))
label = Image.open(os.path.join(self.root_dir, "train", "trainseg", self.label_files[idx]))
image = self.transform(image)
label = torch.tensor(np.array(label)).long()
return image, label
# 创建数据加载器
train_dataset = MyDataset("data")
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
```
在上面的代码中,我们首先定义了一个UNET模型,并在其中定义了16个卷积层和4个池化层。然后,我们定义了一个数据集类MyDataset,用于读取和处理数据集中的图像和标签。在这个类中,我们使用了PyTorch提供的transforms模块来对图像进行预处理,包括将图像转换为Tensor类型,并进行归一化处理。我们还使用了PIL库来读取图像文件和标签文件。
接下来,我们创建了一个数据加载器train_loader,并指定批次大小为4。我们还定义了一个交叉熵损失函数和Adam优化器,并将它们传递给训练循环中。在每个训练循环中,我们首先使用optimizer.zero_grad()清除梯度,然后计算模型输出和损失,使用loss.backward()计算梯度,使用optimizer.step()更新模型参数。最后,我们打印出每个epoch和每个batch的平均损失。
需要注意的是,上面的代码中只训练了一个epoch,实际使用时应该设置更多的epoch来提高模型的准确性。同时,还应该添加一些代码来保存模型和计算模型在验证集上的准确性等。
IDLE SHELL写UNET代码,其中数据集data,子文件为训练集train,验证集val,训练集子文件为图像文件trainvol,标签文件trainseg,验证集子文件为图像文件valvol,标签文件valseg
假设你已经安装好了PyTorch和torchvision,并且已经将数据集文件夹“data”放在了当前目录下,那么你可以按照以下步骤编写UNET代码:
1. 导入必要的库和模块:
```python
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from dataset import UNetDataset
from model import UNet
```
2. 定义数据预处理的transforms:
```python
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=15),
transforms.ToTensor()
])
val_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
```
3. 创建训练集和验证集的dataset:
```python
train_dataset = UNetDataset(data_dir='data/train',
img_dir='trainvol',
mask_dir='trainseg',
transform=train_transforms)
val_dataset = UNetDataset(data_dir='data/val',
img_dir='valvol',
mask_dir='valseg',
transform=val_transforms)
```
4. 创建训练集和验证集的dataloader:
```python
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)
```
5. 创建UNet模型:
```python
model = UNet()
```
6. 定义损失函数和优化器:
```python
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
7. 训练模型:
```python
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
val_loss = 0.0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
model.eval()
for batch_idx, (data, target) in enumerate(val_loader):
output = model(data)
loss = criterion(output, target)
val_loss += loss.item() * data.size(0)
train_loss /= len(train_dataset)
val_loss /= len(val_dataset)
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch+1, train_loss, val_loss))
```
8. 至此,你已经完成了UNET模型的训练,可以使用该模型对新的图像进行分割了。
阅读全文