PYTHON写一段UNET分割代码,数据集图像在data/train/trainvol,标签在data/train/trainseg,验证集图像在valvol,标签在valseg
时间: 2024-02-03 15:13:15 浏览: 72
以下是一个简单的基于PyTorch的UNET分割代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from torch.utils.data import Dataset
import os
from PIL import Image
class CustomDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.images = os.listdir(os.path.join(root_dir, 'trainvol'))
self.masks = os.listdir(os.path.join(root_dir, 'trainseg'))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.root_dir, 'trainvol', self.images[idx])
mask_path = os.path.join(self.root_dir, 'trainseg', self.masks[idx])
image = Image.open(img_path).convert('RGB')
mask = Image.open(mask_path).convert('L')
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv5 = nn.Conv2d(128, 256, 3, padding=1)
self.conv6 = nn.Conv2d(256, 256, 3, padding=1)
self.pool3 = nn.MaxPool2d(2, 2)
self.conv7 = nn.Conv2d(256, 512, 3, padding=1)
self.conv8 = nn.Conv2d(512, 512, 3, padding=1)
self.up1 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv9 = nn.Conv2d(512, 256, 3, padding=1)
self.conv10 = nn.Conv2d(256, 256, 3, padding=1)
self.up2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv11 = nn.Conv2d(256, 128, 3, padding=1)
self.conv12 = nn.Conv2d(128, 128, 3, padding=1)
self.up3 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv13 = nn.Conv2d(128, 64, 3, padding=1)
self.conv14 = nn.Conv2d(64, 64, 3, padding=1)
self.conv15 = nn.Conv2d(64, 2, 1)
def forward(self, x):
c1 = F.relu(self.conv1(x))
c1 = F.relu(self.conv2(c1))
p1 = self.pool1(c1)
c2 = F.relu(self.conv3(p1))
c2 = F.relu(self.conv4(c2))
p2 = self.pool2(c2)
c3 = F.relu(self.conv5(p2))
c3 = F.relu(self.conv6(c3))
p3 = self.pool3(c3)
c4 = F.relu(self.conv7(p3))
c4 = F.relu(self.conv8(c4))
u1 = self.up1(c4)
u1 = torch.cat([u1, c3], dim=1)
c5 = F.relu(self.conv9(u1))
c5 = F.relu(self.conv10(c5))
u2 = self.up2(c5)
u2 = torch.cat([u2, c2], dim=1)
c6 = F.relu(self.conv11(u2))
c6 = F.relu(self.conv12(c6))
u3 = self.up3(c6)
u3 = torch.cat([u3, c1], dim=1)
c7 = F.relu(self.conv13(u3))
c7 = F.relu(self.conv14(c7))
out = self.conv15(c7)
return out
def train_net(net, device, train_loader, optimizer, criterion):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
def val_net(net, device, val_loader, criterion):
net.eval()
val_loss = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = net(data)
val_loss += criterion(output, target)
return val_loss / len(val_loader)
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transformation = transforms.Compose([transforms.Resize((256, 256)),
transforms.ToTensor()])
train_dataset = CustomDataset("data/train", transform=transformation)
val_dataset = CustomDataset("data/val", transform=transformation)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True)
net = UNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
for epoch in range(10):
train_net(net, device, train_loader, optimizer, criterion)
val_loss = val_net(net, device, val_loader, criterion)
print("Epoch: {}, Validation Loss: {}".format(epoch+1, val_loss))
if __name__ == '__main__':
main()
```
请确保将数据集文件夹放在与代码文件相同的目录中,并按以下方式组织文件夹:
```
data/
train/
trainvol/
image_1.png
image_2.png
...
trainseg/
mask_1.png
mask_2.png
...
val/
valvol/
image_1.png
image_2.png
...
valseg/
mask_1.png
mask_2.png
...
```
注意,此代码仅用于示例目的,可能需要根据您的数据集进行更改和调整。
阅读全文