0/1背包问题 动态规划 python代码
时间: 2023-10-22 13:18:54 浏览: 83
很高兴为您提供答案!关于0/1背包问题的动态规划Python代码,以下是一个标准的示例代码:
```
def knapSack(W, wt, val, n):
if n == 0 or W == 0 :
return 0
if (wt[n-1] > W):
return knapSack(W, wt, val, n-1)
else:
return max(val[n-1] + knapSack(W-wt[n-1], wt, val, n-1),
knapSack(W, wt, val, n-1))
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print(knapSack(W, wt, val, n))
```
这段代码就是实现了0/1背包问题的动态规划求解。其中,val数组存放了每个物品的价值,wt数组存放了每个物品的重量,W表示背包的最大承重,n表示物品的数量。运行上述代码,输出的结果是220,即背包能够承载的最大价值是220。
希望这能够帮助到您,有任何其他问题,欢迎随时向我提出!
相关问题
用动态规划算法求解0/1背包问题python完整代码
好的,下面是用动态规划算法求解0/1背包问题的Python完整代码:
```python
def knapsack(weights, values, capacity):
n = len(weights)
dp = [[0] * (capacity + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, capacity + 1):
if weights[i - 1] > j:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1])
return dp[n][capacity]
# 测试
weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
capacity = 8
print(knapsack(weights, values, capacity)) # 输出:11
```
其中,`weights`和`values`分别是物品的重量和价值的列表,`capacity`是背包的容量。`n`是物品的数量,`dp`是一个`(n+1)×(capacity+1)`的二维列表,`dp[i][j]`表示在前`i`个物品中选择不超过重量为`j`的物品可以得到的最大价值。
我们用两个嵌套的循环来遍历所有的物品和容量。当物品的重量超过当前容量时,我们无法选择这个物品,因此最大价值就是前`i-1`个物品的最大价值,即`dp[i-1][j]`。当物品的重量不超过当前容量时,我们可以选择这个物品,也可以不选择这个物品。如果不选择这个物品,最大价值就是前`i-1`个物品的最大价值,即`dp[i-1][j]`。如果选择这个物品,最大价值就是前`i-1`个物品中不超过重量为`j-weights[i-1]`的物品可以得到的最大价值,加上当前物品的价值,即`dp[i-1][j-weights[i-1]]+values[i-1]`。因此,我们在这两种情况中选择价值更大的方案,更新`dp[i][j]`的值。
最后,返回`dp[n][capacity]`即可得到在不超过背包容量的情况下可以得到的最大价值。
01背包问题动态规划python代码和运行结果
当你具体给出问题的参数后,我可以给你提供相应的代码和运行结果。这里给你一个通用的 01背包问题的动态规划python代码,但是没有运行结果:
```python
def knapSack(W, wt, val, n):
K = [[0 for x in range(W + 1)] for x in range(n + 1)]
# 构建表 K[][] 从底向上
for i in range(n + 1):
for w in range(W + 1):
if i == 0 or w == 0:
K[i][w] = 0
elif wt[i-1] <= w:
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])
else:
K[i][w] = K[i-1][w]
return K[n][W]
# 测试
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print(knapSack(W, wt, val, n))
```
这里我们假设我们有三个物品,其价值分别为60, 100, 120,重量分别为10, 20, 30。背包的容量为50。运行上面的代码,它将打印出最大价值,即220。
阅读全文