class StockTradingEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, data, window_size): super(StockTradingEnv, self).__init__() self.data = data self.window_size = window_size self.action_space = spaces.Discrete(3) # 买入,卖出,持有 self.observation_space = spaces.Box(low=0, high=1, shape=(6, self.window_size + 1), dtype=np.float32) self.profit = 0 self.total_reward = 0 self.current_step = self.window_size self.done = False
时间: 2024-04-28 17:20:16 浏览: 162
这段代码是一个基于 Gym 库实现的股票交易环境 StockTradingEnv,其中包括了环境的初始化、动作空间、状态空间、当前状态等信息。具体来说,这个环境中的动作空间为三个离散值,分别代表买入、卖出和持有;状态空间为一个 6x(window_size+1) 的矩阵,其中包括了当前股票的开、高、低、收、成交量以及当前持有的股票数量;当前状态为当前时间步的窗口大小加一。
相关问题
用akshare,gym写出股票强化学习代码
好的,我可以为您提供一个简单的股票强化学习代码,使用akshare和gym库。以下是代码:
```python
import gym
import akshare as ak
import numpy as np
# 获取股票数据
stock_code = 'sh600000'
stock_df = ak.stock_zh_a_hist(stock_code)
# 定义股票强化学习环境
class StockEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self, data, initial_investment=20000):
super(StockEnv, self).__init__()
self.data = data
self.initial_investment = initial_investment
self.action_space = gym.spaces.Discrete(3) # 买入、卖出、不操作
self.observation_space = gym.spaces.Box(low=0, high=1, shape=(6,))
self.reset()
def reset(self):
self.current_step = 0
self.balance = self.initial_investment
self.shares = 0
self.net_worth = self.balance + self.shares * self.data[self.current_step][3]
return self._next_observation()
def _next_observation(self):
obs = np.array([
self.data[self.current_step][1] / max(self.data[:, 1]), # 当前股价
self.data[self.current_step][2] / max(self.data[:, 2]), # 最高股价
self.data[self.current_step][3] / max(self.data[:, 3]), # 最低股价
self.data[self.current_step][4] / max(self.data[:, 4]), # 当前成交量
self.balance / self.net_worth, # 当前账户余额占净值的比例
self.shares / self.net_worth # 当前持有股票价值占净值的比例
])
return obs
def step(self, action):
assert self.action_space.contains(action)
prev_net_worth = self.net_worth
current_price = self.data[self.current_step][3]
if action == 0: # 买入股票
shares_to_buy = int(self.balance / current_price)
self.shares += shares_to_buy
self.balance -= shares_to_buy * current_price
elif action == 1: # 卖出股票
shares_to_sell = self.shares
self.shares = 0
self.balance += shares_to_sell * current_price
self.current_step += 1
self.net_worth = self.balance + self.shares * current_price
reward = self.net_worth - prev_net_worth
done = self.current_step == len(self.data) - 1
return self._next_observation(), reward, done, {}
def render(self, mode='human'):
print(f'Step: {self.current_step}')
print(f'Balance: {self.balance}')
print(f'Shares: {self.shares}')
print(f'Net Worth: {self.net_worth}')
# 定义股票交易策略
def policy(obs):
if obs[0] > obs[1]: # 股价上涨,买入股票
return 0
elif obs[0] < obs[1]: # 股价下跌,卖出股票
return 1
else: # 股价不变,不操作
return 2
# 训练股票强化学习模型
env = StockEnv(stock_df.values)
for episode in range(10):
obs = env.reset()
done = False
while not done:
action = policy(obs)
obs, reward, done, info = env.step(action)
env.render()
```
该代码通过akshare库获取股票数据,定义了一个股票强化学习环境,并在该环境上实现了一个简单的股票交易策略。在训练过程中,模型将根据当前观察到的股票数据来决定下一步应该采取的行动,直到达到指定的训练次数。
用akshare,gym写出多股票强化学习代码
好的,下面是使用 akshare 和 gym 库实现多股票强化学习的代码,主要包括以下步骤:
1. 导入需要的库和模块。
2. 使用 akshare 获取多只股票的历史数据。
3. 对数据进行预处理,包括缺失值填充、数据标准化等。
4. 使用 gym 创建股票交易环境,定义交易动作和奖励机制。
5. 创建强化学习模型,使用历史数据进行训练和优化。
6. 在交易环境中进行模型测试和优化。
```python
import akshare as ak
import gym
import numpy as np
import pandas as pd
from gym import spaces
# 获取多只股票的历史数据
stocks = ['sh000001', 'sz000002', 'sz000003']
start_date = '20100101'
end_date = '20220101'
stock_data = []
for s in stocks:
stock_data.append(ak.stock_zh_a_hist(symbol=s, start_date=start_date, end_date=end_date, adjust='hfq'))
# 合并多只股票数据
data = pd.concat(stock_data, axis=0, ignore_index=True)
data = data.sort_values(['symbol', 'date'], ascending=[True, True])
data = data.reset_index(drop=True)
# 对数据进行预处理
data['open'] = data.groupby('symbol')['open'].apply(lambda x: x.fillna(method='ffill'))
data['high'] = data.groupby('symbol')['high'].apply(lambda x: x.fillna(method='ffill'))
data['low'] = data.groupby('symbol')['low'].apply(lambda x: x.fillna(method='ffill'))
data['close'] = data.groupby('symbol')['close'].apply(lambda x: x.fillna(method='ffill'))
data['volume'] = data.groupby('symbol')['volume'].apply(lambda x: x.fillna(method='ffill'))
data['open'] = data.groupby('symbol')['open'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['high'] = data.groupby('symbol')['high'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['low'] = data.groupby('symbol')['low'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['close'] = data.groupby('symbol')['close'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['volume'] = data.groupby('symbol')['volume'].apply(lambda x: (x - np.mean(x)) / np.std(x))
# 创建股票交易环境
class StockTradingEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self, df):
self.df = df
self.reward_range = (0, np.inf)
self.action_space = spaces.Box(low=-1, high=1, shape=(len(stocks),))
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(len(stocks), 5))
def _next_observation(self):
obs = []
for s in stocks:
obs.append(self.df.loc[self.current_step][[s + '_open', s + '_high', s + '_low', s + '_close', s + '_volume']])
return obs
def _take_action(self, action):
for i in range(len(stocks)):
self.df.loc[self.current_step, stocks[i] + '_close'] *= (1 + action[i])
self.current_step += 1
def reset(self):
self.current_step = 0
return self._next_observation()
def step(self, action):
self._take_action(action)
obs = self._next_observation()
reward = self._get_reward()
done = self.current_step == len(self.df) - 1
return obs, reward, done, {}
def _get_reward(self):
reward = 0
for s in stocks:
if self.df.loc[self.current_step][s + '_close'] > self.df.loc[self.current_step - 1][s + '_close']:
reward += 1
else:
reward -= 1
return reward
# 创建强化学习模型
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
env = DummyVecEnv([lambda: StockTradingEnv(data)])
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)
# 在交易环境中进行模型测试和优化
obs = env.reset()
for i in range(len(data) - 1):
action, _states = model.predict(obs)
obs, rewards, done, info = env.step(action)
if done:
obs = env.reset()
```
阅读全文