请用一段代码示例一下encoder-decoder
时间: 2023-08-25 20:07:52 浏览: 92
Sure! 这里是一个简单的Transformer模型的 encoder-decoder 实现代码示例:
```
import torch.nn as nn
import torch.nn.functional as F
import torch
class TransformerEncoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1, num_heads=8, dropout=0.1):
super().__init__()
self.self_attn = nn.MultiheadAttention(hidden_size, num_heads)
self.fc1 = nn.Linear(hidden_size, input_size)
self.norm1 = nn.LayerNorm(input_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# Self-Attention
x, _ = self.self_attn(x, x, x)
# Layer Normalization
x = self.norm1(x)
# Fully Connected layer
x = self.fc1(x)
# Dropout
x = self.dropout(x)
return x
class TransformerDecoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1, num_heads=8, dropout=0.1):
super().__init__()
self.self_attn = nn.MultiheadAttention(hidden_size, num_heads)
self.fc1 = nn.Linear(hidden_size, input_size)
self.norm1 = nn.LayerNorm(input_size)
self.dropout1 = nn.Dropout(dropout)
self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads)
self.fc2 = nn.Linear(input_size, hidden_size)
self.norm2 = nn.LayerNorm(hidden_size)
self.dropout2 = nn.Dropout(dropout)
self.fc3 = nn.Linear(hidden_size, input_size)
def forward(self, x, encoder_output):
# Self-Attention
x, _ = self.self_attn(x, x, x)
# Layer Normalization
x = self.norm1(x)
# Dropout
x = self.dropout1(x)
# Multihead-Attention with Encoder output
x, _ = self.self_attn(x, encoder_output, encoder_output)
# Layer Normalization
x = self.norm2(x)
# Fully Connected layer
x = self.fc2(x)
x = self.dropout2(x)
# Final Fully Connected layer
x = self.fc3(x)
return x
```
这段代码实现了一个Transformer模型的encoder-decoder架构。其中,Encoder将输入序列转换为其隐层表示,Decoder根据上下文向量生成输出序列。在实现中,我们使用了多头自注意力模块以及一个用于整合Encoder输出的多头注意力模块。同时,我们还加入了Batch-Norm以及Dropout层来防止过拟合。
阅读全文