gan生成一维数据
时间: 2023-09-03 20:10:59 浏览: 292
GAN(Generative Adversarial Networks)是一种生成模型,可以用来生成各种类型的数据,包括一维数据。下面是一个简单的GAN生成一维数据的代码示例:
```python
import numpy as np
from keras.layers import Input, Dense
from keras.models import Model
from keras.optimizers import Adam
# 定义生成器
def build_generator(input_size):
input_layer = Input(shape=(input_size,))
x = Dense(16, activation='relu')(input_layer)
x = Dense(16, activation='relu')(x)
output_layer = Dense(1)(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model
# 定义判别器
def build_discriminator():
input_layer = Input(shape=(1,))
x = Dense(16, activation='relu')(input_layer)
x = Dense(16, activation='relu')(x)
output_layer = Dense(1, activation='sigmoid')(x)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
return model
# 定义GAN模型
def build_gan(generator, discriminator):
discriminator.trainable = False
input_layer = Input(shape=(100,))
generated_data = generator(input_layer)
validity = discriminator(generated_data)
model = Model(inputs=input_layer, outputs=validity)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
return model
# 生成一维数据
def generate_data(num_samples):
random_data = np.random.normal(0, 1, size=(num_samples, 100))
generated_data = generator.predict(random_data)
return generated_data
# 训练GAN模型
def train_gan(generator, discriminator, gan, num_epochs, batch_size):
for epoch in range(num_epochs):
random_data = np.random.normal(0, 1, size=(batch_size, 100))
generated_data = generator.predict(random_data)
real_data = np.random.normal(4, 1.5, size=(batch_size, 1))
discriminator_loss_real = discriminator.train_on_batch(real_data, np.ones((batch_size, 1)))
discriminator_loss_generated = discriminator.train_on_batch(generated_data, np.zeros((batch_size, 1)))
discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_generated)
random_data = np.random.normal(0, 1, size=(batch_size, 100))
gan_loss = gan.train_on_batch(random_data, np.ones((batch_size, 1)))
print("Epoch:", epoch, "Discriminator Loss:", discriminator_loss, "GAN Loss:", gan_loss)
# 创建生成器、判别器和GAN模型
generator = build_generator(100)
discriminator = build_discriminator()
gan = build_gan(generator, discriminator)
# 训练GAN模型
train_gan(generator, discriminator, gan, num_epochs=5000, batch_size=64)
# 生成一维数据并可视化
generated_data = generate_data(1000)
import matplotlib.pyplot as plt
plt.hist(generated_data, bins=20)
plt.show()
```
该代码使用了Keras框架,通过建立生成器、判别器和GAN模型,以及训练GAN模型,来生成一维数据。其中,生成器和判别器都是使用Dense层建立的神经网络,GAN模型则将生成器和判别器结合起来,通过训练让生成器生成的数据更加真实。最后,使用生成器生成了1000个数据,并通过直方图可视化。
阅读全文