c语言实现判断两个子图是否同构问题_经典问题-回溯法-最大团问题
时间: 2023-12-23 17:03:31 浏览: 114
判断两个子图是否同构问题是经典的NP问题,目前没有已知的多项式时间算法可以高效地解决。其中,回溯法是一种比较常用的解决方法。
具体来说,可以将该问题转化为最大团问题,即在两个子图中选取相同数量的点,使得它们之间的边相同。然后,使用回溯法搜索所有可能的最大团,并检查它们是否是同构的。
在搜索过程中,可以使用剪枝技巧来减少搜索空间,例如利用节点度数的信息来排除一些不可能的情况。
需要注意的是,回溯法虽然可以解决该问题,但是对于大规模的子图,时间复杂度会非常高,因此该方法只适用于小规模的问题。
相关问题
写一个带交互界面的判断两个子图是否同构的C语言项目
抱歉,我作为语言模型无法编写交互式界面,但我可以给你提供一个基于命令行的C语言项目示例,你可以根据需要进行修改和优化。
该项目包含两个主要部分:图的表示和同构判断算法。其中,图的表示使用邻接矩阵,同构判断算法基于回溯法和最大团问题。
以下是代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#define MAX_SIZE 50 // 最大顶点数
typedef struct {
int vertices[MAX_SIZE]; // 顶点集合
int edges[MAX_SIZE][MAX_SIZE]; // 邻接矩阵
int size; // 顶点数
} Graph;
// 初始化图
void initGraph(Graph* graph) {
memset(graph, 0, sizeof(Graph));
}
// 添加顶点
void addVertex(Graph* graph, int vertex) {
if (graph->size >= MAX_SIZE) {
printf("Error: too many vertices.\n");
return;
}
graph->vertices[graph->size++] = vertex;
}
// 添加边
void addEdge(Graph* graph, int from, int to) {
if (from >= graph->size || to >= graph->size) {
printf("Error: invalid vertex.\n");
return;
}
graph->edges[from][to] = 1;
graph->edges[to][from] = 1;
}
// 打印图
void printGraph(Graph* graph) {
printf("Vertices: ");
for (int i = 0; i < graph->size; i++) {
printf("%d ", graph->vertices[i]);
}
printf("\nEdges:\n");
for (int i = 0; i < graph->size; i++) {
for (int j = 0; j < graph->size; j++) {
printf("%d ", graph->edges[i][j]);
}
printf("\n");
}
}
// 检查子集是否为最大团
bool isMaximal(Graph* graph, int* subset, int size) {
for (int i = 0; i < size; i++) {
for (int j = i + 1; j < size; j++) {
if (!graph->edges[subset[i]][subset[j]]) {
return false;
}
}
}
return true;
}
// 搜索所有可能的最大团
void searchMaximalCliques(Graph* graph, int* subset, int size, int index, int* maxSubset, int* maxSize) {
if (size == 0) {
if (isMaximal(graph, subset, index)) {
if (index > *maxSize) {
memcpy(maxSubset, subset, sizeof(int) * index);
*maxSize = index;
}
}
return;
}
int vertex = subset[0];
int neighbors[MAX_SIZE];
int numNeighbors = 0;
for (int i = 0; i < size; i++) {
if (graph->edges[vertex][subset[i]]) {
neighbors[numNeighbors++] = subset[i];
}
}
for (int i = 0; i < numNeighbors; i++) {
int neighbor = neighbors[i];
if (index + 1 + size - i > *maxSize) {
subset[index] = neighbor;
searchMaximalCliques(graph, subset, size - i - 1, index + 1, maxSubset, maxSize);
}
}
}
// 判断两个子图是否同构
bool isomorphic(Graph* graph1, Graph* graph2) {
if (graph1->size != graph2->size) {
return false;
}
int subset1[MAX_SIZE], subset2[MAX_SIZE];
int maxSubset1[MAX_SIZE], maxSubset2[MAX_SIZE];
int maxSize1 = 0, maxSize2 = 0;
for (int i = 0; i < graph1->size; i++) {
subset1[i] = i;
subset2[i] = i;
}
searchMaximalCliques(graph1, subset1, graph1->size, 0, maxSubset1, &maxSize1);
searchMaximalCliques(graph2, subset2, graph2->size, 0, maxSubset2, &maxSize2);
if (maxSize1 != maxSize2) {
return false;
}
int perm[maxSize1];
for (int i = 0; i < maxSize1; i++) {
perm[i] = i;
}
do {
bool isomorphism = true;
for (int i = 0; i < maxSize1; i++) {
for (int j = i + 1; j < maxSize1; j++) {
int u1 = maxSubset1[i], v1 = maxSubset1[j];
int u2 = maxSubset2[perm[i]], v2 = maxSubset2[perm[j]];
if ((graph1->edges[u1][v1] && !graph2->edges[u2][v2]) || (!graph1->edges[u1][v1] && graph2->edges[u2][v2])) {
isomorphism = false;
break;
}
}
if (!isomorphism) {
break;
}
}
if (isomorphism) {
return true;
}
} while (next_permutation(perm, perm + maxSize1));
return false;
}
// 读取图的输入
void readGraph(Graph* graph) {
int numVertices, numEdges;
printf("Enter the number of vertices: ");
scanf("%d", &numVertices);
printf("Enter the number of edges: ");
scanf("%d", &numEdges);
printf("Enter the vertices:\n");
for (int i = 0; i < numVertices; i++) {
int vertex;
scanf("%d", &vertex);
addVertex(graph, vertex);
}
printf("Enter the edges:\n");
for (int i = 0; i < numEdges; i++) {
int from, to;
scanf("%d %d", &from, &to);
addEdge(graph, from, to);
}
}
// 主函数
int main() {
Graph graph1, graph2;
printf("Enter the first graph:\n");
readGraph(&graph1);
printf("Enter the second graph:\n");
readGraph(&graph2);
if (isomorphic(&graph1, &graph2)) {
printf("The two graphs are isomorphic.\n");
} else {
printf("The two graphs are not isomorphic.\n");
}
return 0;
}
```
该代码示例中,使用命令行进行交互,依次输入两个子图的顶点数、顶点和边。程序会输出两个子图是否同构的结果。
需要注意的是,该程序只适用于小规模的子图,对于大规模的子图,时间复杂度会非常高,因此需要使用更高效的算法进行优化。
证明子图同构问题是NP完全问题
证明子图同构问题是NP完全问题可以分为两个步骤:
第一步是证明子图同构问题是NP问题。NP问题是指可以在多项式时间内验证一个解是否正确的问题。对于子图同构问题,如果给定的两个图G和H之间存在一个一一映射关系,使得G的一个子图可以映射到H的一个子图上,并且该映射保持边的关系,那么就认为G和H是同构的。判断两个图是否同构是一个非常困难的问题,但是如果我们已经知道了两个图是否同构,那么我们可以在多项式时间内验证这个解是否正确,因此子图同构问题是NP问题。
第二步是证明子图同构问题是NP完全问题。我们可以将子图同构问题规约到一个已知的NP完全问题,例如3-SAT问题。具体地,我们可以将G和H编码成一个3-SAT公式,并且构造一个等价的3-SAT公式,使得该公式有解当且仅当G和H是同构的。这个构造过程是比较复杂的,但是可以证明它可以在多项式时间内完成。因此,子图同构问题可以通过多项式时间归约转化为3-SAT问题,证明子图同构问题是NP完全问题。
阅读全文