如何用python将混淆矩阵的子图设置为矩形
时间: 2024-02-09 09:11:25 浏览: 71
要将混淆矩阵的子图设置为矩形,可以使用Python中的Matplotlib库。具体步骤如下:
1.导入Matplotlib库和混淆矩阵库
```python
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
```
2.生成混淆矩阵数据
```python
y_true = [0, 1, 2, 0, 1, 2, 0, 1, 2]
y_pred = [0, 0, 2, 0, 1, 1, 1, 2, 2]
cm = confusion_matrix(y_true, y_pred)
```
3.绘制混淆矩阵热力图
```python
fig, ax = plt.subplots(figsize=(6, 6))
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
```
4.添加坐标轴标签和标题
```python
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
xticklabels=class_names, yticklabels=class_names,
title=title,
ylabel='True label',
xlabel='Predicted label')
```
5.将矩形设置为子图的形状
```python
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], 'd'),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
```
这样就可以将混淆矩阵的子图设置为矩形了。完整的代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
# classes = classes[unique_labels(y_true, y_pred)]
classes = classes
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fig, ax = plt.subplots(figsize=(6, 6))
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
# Example usage
class_names = ['class 0', 'class 1', 'class 2']
y_true = [0, 1, 2, 0, 1, 2, 0, 1, 2]
y_pred = [0, 0, 2, 0, 1, 1, 1, 2, 2]
plot_confusion_matrix(y_true, y_pred, classes=class_names, title='Confusion matrix, without normalization')
plt.show()
```
阅读全文