写一个基于resnet18模型,用mish函数代替relu的代码
时间: 2024-05-05 19:18:06 浏览: 101
当然,我可以为您提供一个基于resnet18模型的代码,使用mish函数代替relu函数。以下是代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class Mish(nn.Module):
def __init__(self):
super(Mish, self).__init__()
def forward(self, x):
return x * torch.tanh(F.softplus(x))
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.mish = Mish()
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = self.mish(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = self.mish(out)
return out
class ResNet18(nn.Module):
def __init__(self, num_classes=10):
super(ResNet18, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.mish = Mish()
self.layer1 = self._make_layer(64, 2, stride=1)
self.layer2 = self._make_layer(128, 2, stride=2)
self.layer3 = self._make_layer(256, 2, stride=2)
self.layer4 = self._make_layer(512, 2, stride=2)
self.linear = nn.Linear(512*BasicBlock.expansion, num_classes)
def _make_layer(self, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(BasicBlock(self.in_planes, planes, stride))
self.in_planes = planes * BasicBlock.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.mish(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
```
在这个示例中,我们定义了一个Mish类,以替换在基本块中使用的ReLU函数。我们还定义了ResNet18类,其中包含四个基本块及其初始化和前向传递函数。在第一个基本块中采用Mish激活函数代替ReLU激活函数。这使得整个模型使用Mish函数作为其激活函数。
阅读全文