image1 = np.multiply(image1, mask2)

时间: 2023-09-03 11:05:57 浏览: 48
这段代码是将一个三维的图像张量 `image1` 与一个三维的掩码张量 `mask2` 逐像素相乘,得到一个经过掩码处理的新图像张量。这通常用于将原图像中一部分区域的像素值置零,或者将其乘以一个特定的系数,以达到图像处理的目的。在这里,`mask2` 中的每个像素值都被用来控制对应位置的像素在新图像中是否被保留。如果 `mask2` 中的像素值为零,则对应位置的像素值也会被置零。
相关问题

from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 import os # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\030.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=3) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # apply the mask to the image masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # save the masked image as a file filename = os.path.join(r"I:\18Breakageratecalculation\SVM run\run-images2\030", "segment_%d.png" % i) cv2.imwrite(filename, masked_image) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0)保存超像素识别结果图像

可以使用下面的代码来保存超像素识别结果图像: ``` # create a directory to store the segmented images if not os.path.exists("segmented_images"): os.makedirs("segmented_images") # save the image with superpixel boundaries plt.imsave(os.path.join("segmented_images", "superpixel_boundaries.png"), mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # apply the mask to the image masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # save the masked image as a file filename = os.path.join("segmented_images", "segment_%d.png" % i) cv2.imwrite(filename, masked_image) ``` 这将在当前目录下创建一个名为 "segmented_images" 的文件夹,并将超像素边界图像和每个超像素块保存为单独的图像文件。

from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\030.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=3) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0) cv2.imwrite("segment_%d.png" % i, np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0))导出子块图像到指定文件夹

可以使用以下代码将每个超像素块保存为单独的图像文件: ``` import os # create a directory to store the segmented images if not os.path.exists("segmented_images"): os.makedirs("segmented_images") # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # apply the mask to the image masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # save the masked image as a file filename = os.path.join("segmented_images", "segment_%d.png" % i) cv2.imwrite(filename, masked_image) ``` 这将在当前目录下创建一个名为 "segmented_images" 的文件夹,并将每个超像素块保存为单独的图像文件。

相关推荐

最新推荐

recommend-type

python自学教程-04-自定义JavaScript.ev4.rar

python自学教程-04-自定义JavaScript.ev4.rar
recommend-type

严蔚敏数据结构全套C语言实现

严蔚敏数据结构全套C语言实现
recommend-type

Java_Android的可扩展媒体播放器.zip

Java_Android的可扩展媒体播放器
recommend-type

源代码-DBAdmin 在线Access数据库管理程序 v2.3.zip

源代码-DBAdmin 在线Access数据库管理程序 v2.3.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依