image1 = np.multiply(image1, mask2)
时间: 2023-09-03 12:05:57 浏览: 156
这段代码是将一个三维的图像张量 `image1` 与一个三维的掩码张量 `mask2` 逐像素相乘,得到一个经过掩码处理的新图像张量。这通常用于将原图像中一部分区域的像素值置零,或者将其乘以一个特定的系数,以达到图像处理的目的。在这里,`mask2` 中的每个像素值都被用来控制对应位置的像素在新图像中是否被保留。如果 `mask2` 中的像素值为零,则对应位置的像素值也会被置零。
相关问题
from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 import os # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\030.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=3) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # apply the mask to the image masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # save the masked image as a file filename = os.path.join(r"I:\18Breakageratecalculation\SVM run\run-images2\030", "segment_%d.png" % i) cv2.imwrite(filename, masked_image) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0)保存超像素识别结果图像
可以使用下面的代码来保存超像素识别结果图像:
```
# create a directory to store the segmented images
if not os.path.exists("segmented_images"):
os.makedirs("segmented_images")
# save the image with superpixel boundaries
plt.imsave(os.path.join("segmented_images", "superpixel_boundaries.png"), mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments))
# loop over the unique segment values
for (i, segVal) in enumerate(np.unique(segments)):
# construct a mask for the segment
mask = np.zeros(image.shape[:2], dtype="uint8")
mask[segments == segVal] = 255
# apply the mask to the image
masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# save the masked image as a file
filename = os.path.join("segmented_images", "segment_%d.png" % i)
cv2.imwrite(filename, masked_image)
```
这将在当前目录下创建一个名为 "segmented_images" 的文件夹,并将超像素边界图像和每个超像素块保存为单独的图像文件。
from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\030.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=3) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0) cv2.imwrite("segment_%d.png" % i, np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0))导出子块图像到指定文件夹
可以使用以下代码将每个超像素块保存为单独的图像文件:
```
import os
# create a directory to store the segmented images
if not os.path.exists("segmented_images"):
os.makedirs("segmented_images")
# loop over the unique segment values
for (i, segVal) in enumerate(np.unique(segments)):
# construct a mask for the segment
mask = np.zeros(image.shape[:2], dtype="uint8")
mask[segments == segVal] = 255
# apply the mask to the image
masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# save the masked image as a file
filename = os.path.join("segmented_images", "segment_%d.png" % i)
cv2.imwrite(filename, masked_image)
```
这将在当前目录下创建一个名为 "segmented_images" 的文件夹,并将每个超像素块保存为单独的图像文件。
阅读全文