s=np.random.randint(0, 100, size=5) print(s)
时间: 2023-11-13 13:06:17 浏览: 73
这段代码使用了 NumPy 库中的 `random` 函数生成了一个长度为 5、取值在 0~99 之间的随机整数数组。代码执行后会输出该数组。可以运行以下代码查看结果:
```python
import numpy as np
s = np.random.randint(0, 100, size=5)
print(s)
```
输出结果类似于:
```
[45 2 89 91 8]
```
相关问题
matrix_r = np.random.randint(0, 256, size=(128, 128)) print(matrix_r) matrix_g = np.random.randint(0, 256, size=(128, 128)) matrix_b = np.random.randint(0, 256, size=(128, 128)) print(matrix_b) print(matrix_b.shape) # 将三个矩阵拼接成一个3通道128乘128的图片
要将三个矩阵拼接成一个3通道128乘128的图片,可以使用matplotlib库中的imshow函数来实现,代码如下:
```
import matplotlib.pyplot as plt
# 将三个矩阵拼接成一个3通道的矩阵
matrix_rgb = np.dstack((matrix_r, matrix_g, matrix_b))
# 显示图片
plt.imshow(matrix_rgb)
plt.show()
```
其中,dstack函数的作用是将三个矩阵按深度方向进行拼接,生成一个3通道的矩阵。imshow函数的作用是显示图片。最后使用show函数显示图片。
image=np.array(grayImage,dtype=float) percent=0.001 num=int(percent*image.shape[0]*image.shape[1]) for i in range(num): temp1=np.random.randint(image.shape[0]) temp2=np.random.randint(image.shape[1]) scale=150 noise=np.random.poisson(scale,1) image[temp1][temp2]+=noise out=image if out.min()<0: low_clip=-1. else: low_clip=0. out=np.clip(out,low_clip,255) expon_image=np.uint8(out) print(expon_image.shape) cv2.imshow("expon_image",expon_image) k=cv2.waitKey(0)优化这段代码的for循环
可以使用numpy的随机函数生成随机的坐标,然后使用numpy的切片和花式索引方式对图像进行操作,可以避免使用循环。
以下是优化后的代码:
```python
import numpy as np
import cv2
grayImage = cv2.imread('test.jpg', 0)
# 转换为浮点型
image = grayImage.astype(float)
percent = 0.001
num = int(percent * image.shape[0] * image.shape[1])
# 生成随机坐标
rand_x = np.random.randint(0, image.shape[0], num)
rand_y = np.random.randint(0, image.shape[1], num)
scale = 150
noise = np.random.poisson(scale, num)
# 对图像进行操作
image[rand_x, rand_y] += noise
# 调整像素值范围
out = np.clip(image, 0, 255)
# 转换为8位整型
expon_image = out.astype(np.uint8)
print(expon_image.shape)
cv2.imshow("expon_image", expon_image)
k = cv2.waitKey(0)
```
使用numpy的切片和花式索引方式,可以避免使用循环,提高代码的效率。同时,也需要注意对图像进行操作时,需要保证图像的类型一致,避免出现类型错误的问题。
阅读全文