c++实现SM2算法
时间: 2023-07-26 15:12:14 浏览: 198
SM2算法是一种基于椭圆曲线密码学的公钥密码算法,下面是C++实现SM2算法的基本步骤:
1. 选取椭圆曲线参数,确定基点G和曲线阶n。
2. 生成密钥对:随机生成私钥d,并计算公钥Q=dG。
3. 加密过程:选择随机数k,计算点C1=kG,计算点S=kPb,计算点T=M⊕KDF(S),其中M为明文,KDF为密钥派生函数。
4. 解密过程:计算点S=dC1,计算点T=M⊕KDF(S)。
下面是一个基于OpenSSL库实现SM2算法的示例代码:
```c++
#include <openssl/ec.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
int SM2_encrypt(unsigned char *in, size_t inlen, unsigned char *out, size_t *outlen, EC_KEY *ec_key)
{
int ret = 0;
const EC_GROUP *group = EC_KEY_get0_group(ec_key);
const EC_POINT *pub_key = EC_KEY_get0_public_key(ec_key);
const BIGNUM *order = EC_GROUP_get0_order(group);
const EVP_MD *md = EVP_sm3();
unsigned char Z[32];
unsigned char kdf[32];
unsigned char C1[65], C2[1024], C3[32];
size_t C1len = 65, C2len = inlen, C3len = 32;
EC_POINT *kG = NULL, *Pb = NULL;
BIGNUM *k = NULL, *S = NULL, *T = NULL;
EVP_MD_CTX *ctx = NULL;
kG = EC_POINT_new(group);
Pb = EC_POINT_new(group);
k = BN_new();
S = BN_new();
T = BN_new();
ctx = EVP_MD_CTX_new();
// 生成随机数k
do {
if (!BN_rand_range(k, order)) {
ret = -1;
break;
}
} while (BN_is_zero(k));
// 计算点C1=kG
if (!EC_POINT_mul(group, kG, k, NULL, NULL, NULL)) {
ret = -1;
break;
}
if (!EC_POINT_point2oct(group, kG, POINT_CONVERSION_UNCOMPRESSED, C1, C1len, NULL)) {
ret = -1;
break;
}
// 计算点S=kPb
if (!EC_POINT_mul(group, Pb, NULL, pub_key, k, NULL)) {
ret = -1;
break;
}
if (!EC_POINT_point2bn(group, Pb, POINT_CONVERSION_UNCOMPRESSED, S, NULL)) {
ret = -1;
break;
}
// 计算Z=Hash(ENTLA||ZA||M)
if (!EVP_Digest(in, inlen, Z, NULL, md, NULL)) {
ret = -1;
break;
}
if (!EC_POINT_point2oct(group, pub_key, POINT_CONVERSION_UNCOMPRESSED, Z + 1, 64, NULL)) {
ret = -1;
break;
}
Z[0] = 0x03;
// 计算点C2=M⊕KDF(S)
if (!EVP_DigestInit_ex(ctx, md, NULL) ||
!EVP_DigestUpdate(ctx, Z, sizeof(Z)) ||
!EVP_DigestUpdate(ctx, in, inlen) ||
!EVP_DigestFinal_ex(ctx, kdf, NULL)) {
ret = -1;
break;
}
for (size_t i = 0; i < sizeof(kdf); i++) {
C2[i] = in[i] ^ kdf[i];
}
// 计算点C3=Hash(Z||C2)
if (!EVP_DigestInit_ex(ctx, md, NULL) ||
!EVP_DigestUpdate(ctx, Z, sizeof(Z)) ||
!EVP_DigestUpdate(ctx, C2, C2len) ||
!EVP_DigestFinal_ex(ctx, C3, NULL)) {
ret = -1;
break;
}
// 组装密文
memcpy(out, C1, C1len);
memcpy(out + C1len, C3, C3len);
memcpy(out + C1len + C3len, C2, C2len);
*outlen = C1len + C3len + C2len;
ret = 1;
done:
EVP_MD_CTX_free(ctx);
BN_free(T);
BN_free(S);
BN_free(k);
EC_POINT_free(Pb);
EC_POINT_free(kG);
return ret;
}
int SM2_decrypt(unsigned char *in, size_t inlen, unsigned char *out, size_t *outlen, EC_KEY *ec_key)
{
int ret = 0;
const EC_GROUP *group = EC_KEY_get0_group(ec_key);
const BIGNUM *d = EC_KEY_get0_private_key(ec_key);
const EVP_MD *md = EVP_sm3();
unsigned char Z[32];
unsigned char kdf[32];
unsigned char C1[65], C2[1024], C3[32];
size_t C1len = 65, C2len = inlen - C1len - C3len, C3len = 32;
EC_POINT *kG = NULL, *Sb = NULL;
BIGNUM *S = NULL, *T = NULL;
EVP_MD_CTX *ctx = NULL;
kG = EC_POINT_new(group);
Sb = EC_POINT_new(group);
S = BN_new();
T = BN_new();
ctx = EVP_MD_CTX_new();
// 解析密文
memcpy(C1, in, C1len);
memcpy(C3, in + C1len, C3len);
memcpy(C2, in + C1len + C3len, C2len);
// 计算点S=dC1
if (!EC_POINT_oct2point(group, kG, C1, C1len, NULL) ||
!EC_POINT_mul(group, Sb, NULL, kG, d, NULL) ||
!EC_POINT_point2bn(group, Sb, POINT_CONVERSION_UNCOMPRESSED, S, NULL)) {
ret = -1;
break;
}
// 计算Z=Hash(ENTLA||ZA||M)
if (!EVP_Digest(C2, C2len, Z, NULL, md, NULL) ||
!EC_POINT_point2oct(group, Sb, POINT_CONVERSION_UNCOMPRESSED, Z + 1, 64, NULL)) {
ret = -1;
break;
}
Z[0] = 0x03;
// 计算点T=M⊕KDF(S)
if (!EVP_DigestInit_ex(ctx, md, NULL) ||
!EVP_DigestUpdate(ctx, Z, sizeof(Z)) ||
!EVP_DigestUpdate(ctx, C2, C2len) ||
!EVP_DigestFinal_ex(ctx, kdf, NULL)) {
ret = -1;
break;
}
for (size_t i = 0; i < sizeof(kdf); i++) {
out[i] = C2[i] ^ kdf[i];
}
*outlen = sizeof(kdf);
ret = 1;
done:
EVP_MD_CTX_free(ctx);
BN_free(T);
BN_free(S);
EC_POINT_free(Sb);
EC_POINT_free(kG);
return ret;
}
```
此代码实现的SM2算法需要依赖OpenSSL库,并且仅提供了加密和解密的基本实现,还需要根据具体应用场景进行适当的调整和优化。
阅读全文