batch = s.shape[0] s = s.view(batch, -1) logits = self.model(s) return logits, state

时间: 2024-04-12 16:33:35 浏览: 1
这段代码是一个函数,它对输入的张量s进行一系列操作并返回结果。让我们逐行解释代码的功能: 1. `batch = s.shape[0]`:这行代码计算了张量s的批次大小(batch size),并将其赋值给变量batch。这可以通过查看s张量的形状来实现,其中s.shape返回一个表示张量形状的元组,[0]索引表示批次大小。 2. `s = s.view(batch, -1)`:这行代码使用view方法重新调整张量s的形状。第一个参数batch表示新的批次大小,而第二个参数-1表示将剩余的维度展平成一维。这个操作通常用于将输入数据调整为模型所期望的输入形状。 3. `logits = self.model(s)`:这行代码调用self.model来对调整后的输入张量s进行模型推理,得到输出张量logits。根据代码上下文,self.model是一个神经网络模型对象,可以接受输入数据并返回输出结果。 4. `return logits, state`:这行代码返回计算得到的logits张量和state变量作为函数的结果。 根据你给出的代码片段,在输入张量s经过形状调整和模型推理后,得到的输出是logits张量和state变量。请注意,state变量是在函数之外定义的,它可能在其他地方使用或更新。 如果你还有其他问题,请随时提问。
相关问题

class SegModel(torch.nn.Module): """分词模型""" def __init__(self, vocab_size: int, embedding_size: int, hidden_size: int): super().__init__() self.embedding = torch.nn.Embedding(vocab_size, embedding_size, padding_idx=0) self.lstm = torch.nn.LSTM(embedding_size, hidden_size, batch_first=True, bidirectional=True) self.linear = torch.nn.Linear(2 * hidden_size, 1) self.sigmoid = torch.nn.Sigmoid() def forward(self, inputs: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: embeddings = self.embedding(inputs) outputs, _ = self.lstm(embeddings) logits = self.linear(outputs) logits = logits.squeeze(-1) logits = self.sigmoid(logits) logits = logits * mask return logits

这是一个使用 PyTorch 实现的分词模型,采用了 LSTM 神经网络结构。该模型的输入是一个大小为 `(batch_size, sequence_length)` 的整数张量 `inputs`,表示分词器需要对其中的文本进行分词,其中 `batch_size` 表示批次大小,`sequence_length` 表示序列长度。此外,还需要输入一个大小为 `(batch_size, sequence_length)` 的二元张量 `mask`,其中每个元素表示对应文本是否为填充,即 `1` 表示不是填充,`0` 表示是填充。 模型的输出是一个大小为 `(batch_size, sequence_length)` 的浮点数张量,其中每个元素表示对应位置是否需要分词,即 `1` 表示需要分词,`0` 表示不需要分词。 在模型的构造函数中,首先调用了基类 `torch.nn.Module` 的构造函数来初始化模型。然后,定义了一个 `torch.nn.Embedding` 层,用于将输入的整数张量转换为词向量。接下来,定义了一个双向 LSTM 层,用于学习输入序列的上下文信息。最后,定义了一个全连接层和一个 sigmoid 激活函数,用于将 LSTM 输出转换为需要分词的概率。在模型的前向传播过程中,首先将输入文本转换为词向量,然后通过 LSTM 层计算序列的上下文信息,再通过全连接层和 sigmoid 激活函数计算需要分词的概率,并与 `mask` 做点乘,得到最终的输出。

def forward_with_weights(self, v, q, w): v_ = self.v_net(v) q_ = self.q_net(q) logits = torch.einsum('bvk,bvq,bqk->bk', (v_, w, q_)) if 1 < self.k: logits = logits.unsqueeze(1) logits = self.p_net(logits).squeeze(1) * self.k return logits有什么作用

这段代码是一个神经网络的前向传播函数,用于计算输入的三个张量 v、q、w 经过神经网络后的输出 logits。具体来说,它首先将 v 和 q 分别通过两个全连接层 v_net 和 q_net 进行线性变换,然后将它们与 w 进行矩阵乘法,得到一个大小为 [batch_size, k] 的矩阵,其中 k 是一个超参数。如果 k 大于 1,那么还会通过一个全连接层 p_net 对这个矩阵进行处理,最后得到一个大小为 [batch_size] 的向量 logits。这个向量的每个元素都表示对应输入的一个样本的输出值。最后,这个向量会乘以 k,得到最终的输出。

相关推荐

生成torch代码:class ConcreteAutoencoderFeatureSelector(): def __init__(self, K, output_function, num_epochs=300, batch_size=None, learning_rate=0.001, start_temp=10.0, min_temp=0.1, tryout_limit=1): self.K = K self.output_function = output_function self.num_epochs = num_epochs self.batch_size = batch_size self.learning_rate = learning_rate self.start_temp = start_temp self.min_temp = min_temp self.tryout_limit = tryout_limit def fit(self, X, Y=None, val_X=None, val_Y=None): if Y is None: Y = X assert len(X) == len(Y) validation_data = None if val_X is not None and val_Y is not None: assert len(val_X) == len(val_Y) validation_data = (val_X, val_Y) if self.batch_size is None: self.batch_size = max(len(X) // 256, 16) num_epochs = self.num_epochs steps_per_epoch = (len(X) + self.batch_size - 1) // self.batch_size for i in range(self.tryout_limit): K.set_learning_phase(1) inputs = Input(shape=X.shape[1:]) alpha = math.exp(math.log(self.min_temp / self.start_temp) / (num_epochs * steps_per_epoch)) self.concrete_select = ConcreteSelect(self.K, self.start_temp, self.min_temp, alpha, name='concrete_select') selected_features = self.concrete_select(inputs) outputs = self.output_function(selected_features) self.model = Model(inputs, outputs) self.model.compile(Adam(self.learning_rate), loss='mean_squared_error') print(self.model.summary()) stopper_callback = StopperCallback() hist = self.model.fit(X, Y, self.batch_size, num_epochs, verbose=1, callbacks=[stopper_callback], validation_data=validation_data) # , validation_freq = 10) if K.get_value(K.mean( K.max(K.softmax(self.concrete_select.logits, axis=-1)))) >= stopper_callback.mean_max_target: break num_epochs *= 2 self.probabilities = K.get_value(K.softmax(self.model.get_layer('concrete_select').logits)) self.indices = K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) return self def get_indices(self): return K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) def get_mask(self): return K.get_value(K.sum(K.one_hot(K.argmax(self.model.get_layer('concrete_select').logits), self.model.get_layer('concrete_select').logits.shape[1]), axis=0)) def transform(self, X): return X[self.get_indices()] def fit_transform(self, X, y): self.fit(X, y) return self.transform(X) def get_support(self, indices=False): return self.get_indices() if indices else self.get_mask() def get_params(self): return self.model

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩