import torch from torch import nn import d2l net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10) ) X = torch.randn((1, 3, 32, 32), dtype=torch.float32) for layer in net: X = layer(X) print(layer.__class__.__name__, 'output shape:\t', X.shape) batch_size = 64 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=32) lr, num_epochs = 0.01, 100 d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()),如何修改代码中的参数,提高准确率并且跑出来时间快一些?
时间: 2023-08-25 09:06:10 浏览: 157
有几个方法可以尝试提高准确率并加快训练时间:
1. 调整学习率 lr:可以尝试不同的学习率 lr,找到最优值。较小的学习率需要更多的迭代次数,但可能会导致更好的性能。而较大的学习率可能会导致训练不稳定,需要进行更多的调整。
2. 使用动量:给优化器添加动量可以加速训练并提高准确率。可以尝试添加动量参数来看看它是否有帮助,例如:`optim.SGD(net.parameters(), lr=lr, momentum=0.9)`
3. 使用更好的优化器:Adam 和 Adagrad 通常比标准的 SGD 更快更准确。可以尝试使用不同的优化器,例如:`optim.Adam(net.parameters(), lr=lr)`
4. 减小 batch_size:减少 batch_size 可以加速训练并提高准确率。但是太小的 batch_size 可能会导致训练不稳定。
5. 增加迭代次数:增加迭代次数可以提高准确率,但会增加训练时间。
6. 增加网络深度:增加网络深度可以提高准确率,但会增加训练时间。
7. 数据增强:增加数据增强(例如随机裁剪、随机翻转、随机旋转等)可以提高模型的鲁棒性和准确率。
你可以根据自己的需求和硬件条件,尝试不同的方法来改进模型。
相关问题
import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
def __init__(self): super().__init__() self._initial = nn.Sequential( nn.Conv2d(3, 32, kernel_size=9, stride=1, padding=4, padding_mode='reflect'), nn.InstanceNorm2d(32, affine=True), nn.ReLU(inplace=True), ) self._down_blocks = nn.Sequential( DownBlock(32, 64, kernel_size=3), DownBlock(64, 128, kernel_size=3), ) self._residual_blocks = nn.Sequential( *[ResidualBlock(128, kernel_size=3) for _ in range(5)] ) self._up_blocks = nn.Sequential( UpBlock(128, 64, kernel_size=3), UpBlock(64, 32, kernel_size=3), ) self._final = nn.Conv2d(32, 3, kernel_size=9, stride=1, padding=4, padding_mode='reflect') def forward(self, x: Tensor) -> Tensor: x = self._initial(x) x = self._down_blocks(x) x = self._residual_blocks(x) x = self._up_blocks(x) x = self._final(x) x = torch.sigmoid(x) return x
这段代码是一个基于深度学习的图像处理模型,使用了卷积神经网络和残差网络来实现图像的去噪和修复。其中包含了初始卷积层、下采样卷积层、残差块和上采样卷积层,以及最终的卷积层用于输出修复后的图像。在前向传播时,输入图像经过多层卷积和非线性变换后得到修复后的图像。最后通过 sigmoid 函数将像素值限制在 0~1 范围内。
阅读全文