在使用matlab进行织物瑕疵目标提取实验时,进行毛发提取,采用基于边缘检测的目标提取方法,请写代码

时间: 2023-07-15 22:14:30 浏览: 15
以下是基于边缘检测的毛发提取代码示例: ```matlab % 读取图像 img = imread('fabric.jpg'); % 转换为灰度图像 gray = rgb2gray(img); % 边缘检测 edgeImg = edge(gray, 'canny'); % 填充边缘 filledImg = imfill(edgeImg, 'holes'); % 提取毛发区域 hairImg = filledImg - edgeImg; % 显示结果 subplot(1,2,1); imshow(img); title('原图'); subplot(1,2,2); imshow(hairImg); title('毛发区域'); ``` 该代码首先读取一张织物照片,然后将其转换为灰度图像。接下来,使用Canny算子进行边缘检测,并使用imfill函数填充边缘内部。最后,通过从填充图像中减去边缘图像来提取毛发区域。最后将原图和毛发区域图像在一个subplot中显示出来。 需要注意的是,这种方法并不完美,可能会存在提取不完全或误提取的情况。因此,在实际应用中,可能需要结合其他方法进行进一步处理。
相关问题

在使用matlab进行织物瑕疵目标提取实验时,提取毛发,基于边缘检测的目标提取方法,代码实现

基于边缘检测的目标提取方法可以使用Canny边缘检测算法,Matlab中有现成的函数可以直接调用。以下是一个简单的示例代码: ```matlab % 读取图像 img = imread('fabric.jpg'); % 转为灰度图像 gray = rgb2gray(img); % 边缘检测 edgeImg = edge(gray, 'canny'); % 显示结果 imshow(edgeImg); ``` 在上面的代码中,我们首先读取了一张织物图像并将其转换为灰度图像。然后我们使用`edge`函数进行Canny边缘检测,将结果保存在`edgeImg`变量中。最后,我们使用`imshow`函数显示边缘检测结果。 注意,这个方法只是提取了织物中的边缘信息,如果要提取毛发目标,可能需要进一步处理。例如,可以使用形态学操作来去除边缘检测结果中的噪声和小块区域,然后使用区域生长或者其他方法提取毛发目标。

在用matlab进行织物图像中毛发的提取时,采用基于边缘检测目标提取方法的代码实现

以下是基于边缘检测的毛发提取的Matlab代码实现: ```matlab % 读取原始图像 img = imread('fabric.jpg'); % 转换为灰度图像 gray_img = rgb2gray(img); % 使用Canny算子进行边缘检测 edge_img = edge(gray_img, 'canny'); % 对边缘图像进行闭运算,填充毛孔和裂缝 se = strel('disk', 3); closed_img = imclose(edge_img, se); % 使用连通区域分析提取毛发区域 cc = bwconncomp(closed_img); numPixels = cellfun(@numel, cc.PixelIdxList); [~, idx] = max(numPixels); hair_mask = zeros(size(closed_img)); hair_mask(cc.PixelIdxList{idx}) = 1; % 可视化结果 figure; subplot(1,2,1); imshow(img); title('原始图像'); subplot(1,2,2); imshow(hair_mask); title('毛发区域'); ``` 这段代码首先读取一张织物图像,将其转换为灰度图像。然后使用Canny算子进行边缘检测,得到图像的边缘。接着对边缘图像进行闭运算,填充毛孔和裂缝。最后使用连通区域分析提取毛发区域,并可视化结果。

相关推荐

基于边缘检测的目标提取方法一般包括以下几个步骤: 1. 读入图像并进行预处理,如灰度化、滤波等操作; 2. 进行边缘检测,可以使用Canny算子、Sobel算子等经典算法; 3. 对边缘图像进行二值化,将边缘转化为目标区域; 4. 对二值化图像进行形态学处理,如膨胀、腐蚀、开闭运算等,以去除噪声或填充空洞; 5. 对处理后的图像进行目标检测,可以使用连通区域分析、区域生长等方法,将目标区域提取出来。 下面是一个简单的基于边缘检测的目标提取代码示例: matlab % 读入图像并进行预处理 I = imread('fabric.jpg'); I_gray = rgb2gray(I); I_filtered = medfilt2(I_gray, [3 3]); % 边缘检测 I_edges = edge(I_filtered, 'canny', 0.3); % 二值化 I_binary = imbinarize(I_edges); % 形态学处理 SE = strel('square', 5); I_morph = imclose(I_binary, SE); % 目标检测 [L, num] = bwlabel(I_morph); stats = regionprops(L, 'Area', 'BoundingBox'); areas = [stats.Area]; idx = find(areas > 1000); I_obj = ismember(L, idx); % 显示结果 imshow(I_obj); 其中,imread函数用于读入图像,rgb2gray函数将彩色图像转化为灰度图像,medfilt2函数进行中值滤波操作,edge函数进行边缘检测,imbinarize函数将边缘图像二值化,strel函数创建一个方形结构元素,imclose函数对二值化图像进行闭运算,bwlabel函数进行连通区域分析,regionprops函数获得区域属性,ismember函数提取目标区域。最后,使用imshow函数显示结果。

最新推荐

(全国二等奖)“华为杯”第十四届中国研究生数学建模竞赛(基于监控视频的前景目标提取)

在中国安防产业中视频监控作为最重要的信息获取手段之一,能对目标有效的提取是重要而基础的问题,因此本文在此背景下,围绕对监控视频的前景目标有效的提取问题,研究了关于1)静态背景、动态背景的前景目标提取,...

骨架提取和交叉点检测的matlab实现

本文介绍了骨架提取和交叉点检测的matlab实现,用的是中轴法,细化法检测出来的是边缘。

基于MATLAB的vibe算法的运动目标检测代码.docx

自己毕业设计是做MATLAB方面的运动目标检测的,所以上面的程序也是自己论文里面用的,是可以较好的实现对于运动目标的前后景的分割。

边缘提取和边缘检测MATLAB代码

边缘检测的各种MATLAB代码,有多种算法,包括CANNY,SOBEL等等,效果很好,方便理解!

MATLAB Delaunay算法提取离散点边界的方法

主要为大家详细介绍了MATLAB Delaunay算法提取离散点边界的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

市建设规划局gis基础地理信息系统可行性研究报告.doc

市建设规划局gis基础地理信息系统可行性研究报告.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

要将Preference控件设置为不可用并变灰java完整代码

以下是将Preference控件设置为不可用并变灰的Java完整代码示例: ```java Preference preference = findPreference("preference_key"); // 获取Preference对象 preference.setEnabled(false); // 设置为不可用 preference.setSelectable(false); // 设置为不可选 preference.setSummary("已禁用"); // 设置摘要信息,提示用户该选项已被禁用 preference.setIcon(R.drawable.disabled_ico

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�