用c语言由邻接矩阵输出任意两个节点长度小于等于n的路径的数目
时间: 2024-02-22 09:55:02 浏览: 120
_loss = 0.0
total_acc = 0.0
with torch.no_grad():
for inputs, labels in dataloader:
inputs = {key: inputs[key].to(device) for key in inputs}
labels = labels.to(device)
下面是用C语言实现的邻接矩阵输出任意两个节点长度小于等于n的路径的数目的代码:
```c
#include<stdio.h>
#include<stdlib.h>
#define MAXN 100
int graph[MAXN][MAXN]; outputs = model(inputs)
loss = criterion(outputs, labels)
total_loss += loss.item() * len(labels)
preds = torch // 邻接矩阵
int n; // 节点数
int count_paths(int u, int v, int len) {
.argmax(outputs, dim=1)
total_acc += torch.sum(preds == labels).item()
avg_loss = total_loss / len(d if (len == 0) {
if (u == v) {
return 1; // u到v的长度ataloader.dataset)
avg_acc = total_acc / len(dataloader.dataset)
return avg_loss, avg_acc
# 定义评估函数为0的路径数为1
} else {
return 0;
}
} else {
int count = 0
def evaluate_test(model, dataloader, device):
model.eval()
total_acc = 0.0
with torch.no;
for (int i = 0; i < n; i++) {
if (graph[u][i]) {
count +=_grad():
for inputs, labels in dataloader:
inputs = {key: inputs[key].to(device) for key in inputs count_paths(i, v, len - 1); // 递归计算长度为len-1的路径数
}
}
labels = labels.to(device)
outputs = model(inputs)
preds = torch.argmax(outputs, dim=1)
total_acc }
return count;
}
}
int main() {
// 读入邻接矩阵
scanf("%d", &n += torch.sum(preds == labels).item()
avg_acc = total_acc / len(dataloader.dataset)
return avg_acc
```
);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n最后,我们可以开始训练模型并进行评估:
```python
# 初始化模型和优化器
device =; j++) {
scanf("%d", &graph[i][j]);
}
}
// 输出任意两个节点长度小 torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TextClassifier(len(class_list)).to(device)
criterion于等于n的路径的数目
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int len = 1; = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-5)
# 训练模型
num_epochs = len <= n; len++) {
ans += count_paths(i, j, len);
}
}
}
printf("%d\n 5
best_valid_acc = 0.0
for epoch in range(num_epochs):
train_loss, train_acc = train(model,", ans);
return 0;
}
```
这个算法的时间复杂度为$O(n^3)$,可以 train_loader, optimizer, criterion, device)
valid_loss, valid_acc = evaluate(model, valid_loader, criterion, device)
print处理节点数比较小的图。如果节点数比较大,可以考虑使用其他更高效的算法,如Floyd算法或Dijkstra算法。
阅读全文