def build_generator(latent_dim): model = tf.keras.Sequential() model.add(Dense(7 * 7 * 256, input_dim=latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(Reshape((7, 7, 256))) model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', activation='tanh')) return model # 定义判别器 def build_discriminator(input_shape): model = tf.keras.Sequential() model.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=input_shape)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.3)) model.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) return model # 定义GAN模型 def build_gan(generator, discriminator): discriminator.trainable = False model = tf.keras.Sequential() model.add(generator) model.add(discriminator) return model
时间: 2023-10-04 08:04:04 浏览: 69
浅谈keras通过model.fit_generator训练模型(节省内存)
这是一个用于生成对抗网络(GAN)的代码。其中,build_generator() 函数用于构建生成器(generator)模型,其输入为潜在空间的维度(latent_dim),输出为一个生成的图像。build_discriminator() 函数用于构建判别器(discriminator)模型,其输入为图像的形状(input_shape),输出为一个二元分类结果(真或假)。最后,build_gan() 函数用于将生成器和判别器组合成一个完整的 GAN 模型,其中,生成器的训练被禁用,判别器的训练被启用。这个模型可以用于生成与原始数据相似的新数据。
阅读全文