对抗自编码降维代码示例
时间: 2023-10-09 14:09:18 浏览: 87
代码示例
以下是一个简单的对抗自编码器的Python示例代码,用于实现降维:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
# 定义对抗自编码器的生成器和判别器
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(256, activation='relu', input_shape=(100,)))
model.add(layers.Dense(784, activation='sigmoid'))
model.add(layers.Reshape((28, 28, 1)))
return model
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
return model
# 定义损失函数和优化器
cross_entropy = tf.keras.losses.BinaryCrossentropy()
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义对抗自编码器模型
class AdversarialAutoencoder(tf.keras.Model):
def __init__(self, latent_dim):
super(AdversarialAutoencoder, self).__init__()
self.latent_dim = latent_dim
self.generator = make_generator_model()
self.discriminator = make_discriminator_model()
def call(self, inputs):
x = self.generator(inputs)
return x
def train_step(self, data):
real_images = data
# 训练判别器
with tf.GradientTape() as disc_tape:
# 从噪声中生成假图像
noise = tf.random.normal([real_images.shape[0], self.latent_dim])
fake_images = self.generator(noise)
# 计算判别器损失
real_output = self.discriminator(real_images)
fake_output = self.discriminator(fake_images)
disc_loss = discriminator_loss(real_output, fake_output)
# 计算判别器梯度并更新
gradients_of_discriminator = disc_tape.gradient(disc_loss, self.discriminator.trainable_variables)
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, self.discriminator.trainable_variables))
# 训练生成器
with tf.GradientTape() as gen_tape:
# 从噪声中生成假图像
noise = tf.random.normal([real_images.shape[0], self.latent_dim])
fake_images = self.generator(noise)
# 计算生成器损失
fake_output = self.discriminator(fake_images)
gen_loss = generator_loss(fake_output)
# 计算生成器梯度并更新
gradients_of_generator = gen_tape.gradient(gen_loss, self.generator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, self.generator.trainable_variables))
return {'discriminator_loss': disc_loss, 'generator_loss': gen_loss}
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 标准化像素值
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
# 将图像展平
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
# 定义对抗自编码器模型和训练参数
aae = AdversarialAutoencoder(latent_dim=100)
aae.compile(optimizer=tf.keras.optimizers.Adam(1e-4))
# 训练对抗自编码器
aae.fit(x_train, x_train, epochs=20, batch_size=128, validation_data=(x_test, x_test))
```
这个代码示例使用了MNIST数据集,将图像展平后进行降维。对抗自编码器使用了一个生成器和一个判别器,通过对抗训练来实现降维。每个训练步骤中,先训练判别器,然后训练生成器,以此来实现对抗训练。最终的目标是让生成器可以生成与输入数据相似的噪声图像,这些噪声图像可以被判别器正确地分类为真实数据。
阅读全文