这个函数是什么意思values = [[3, 4, 5, 1], [33, 6, 1, 2]]v = values[0][0]for row in range(0,len(values)): for column in range(0, len(values[row])): if v < values[row][column]: v = values[row][column]print(v)
时间: 2023-12-13 12:04:17 浏览: 150
这段代码的作用是找出二维列表中的最大值。具体实现如下:
1. 首先定义一个二维列表values。
2. 接着定义变量v为values[0][0],即二维列表中的第一个元素,作为初始最大值。
3. 然后使用两个for循环遍历二维列表中的所有元素,分别获取每个元素的行和列。
4. 在循环中,如果当前元素的值比v大,则将v更新为当前元素的值。
5. 最后输出v,即为二维列表中的最大值。
所以,如果values = [[3, 4, 5, 1], [33, 6, 1, 2]],那么输出结果为33。
相关问题
import numpy as np import pylab as pl import pandas as pd import numpy as np from scipy.optimize import leastsq X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] for i in X2: if X2.index(i)>2927: #两个单元楼的分隔数 x2.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] for i in X3: if X3.index(i)>2927: x3.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] for i in X4: if X4.index(i)>2927: x4.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] for i in X5: if X5.index(i)>2927: x5.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] for i in X6: if X6.index(i)>2927: x6.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] for i in X7: if X7.index(i)>2927: x7.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/66666.xlsx',header=0,usecols=(1,)) mylist1=df.values.tolist() room=[] for i in mylist1: room.append(i[0]) df=pd.read_excel('C:/Users/86147/OneDrive/文档/66666.xlsx',header=0,usecols=(2,)) mylist1=df.values.tolist() tomp=[] for i in mylist1: tomp.append(i[0]) Y=[] for i in range(1,185): room_tomp=zip(room,tomp) ls=[] for k,v in room_tomp: if k<=92: ls.append(v) for w in range(32): Y.append(ls[w])#通过循环y对应列表共有2944个数据 q=X1[:2922] w=X2[:2922] e=X3[:2922] r=X4[:2922] t=X5[:2922] p=X6[:2922] u=X7[:2922] x=np.column_stack((q,w,e,r,t,p,u)).T y=np.array(Y[:2922]).T # 定义待拟合的函数 def func(params, x, y): a1, a2, a3, a4, a5, a6, a7, b = paramsreturn a1 * x[:,0] + a2 * x[:,1] + a3 * x[:,2] + a4 * x[:,3] + a5 * x[:,4] + a6 * x[:,5] + a7 * x[:,6] + b - y # 求解参数 params0 = np.ones(8) # 初始参数 params, flag = leastsq(func, params0, args=(x, y)) # 求解参数 # 输出结果 print(f"a1: {params[0]}, a2: {params[1]}, a3: {params[2]}, a4: {params[3]}, a5: {params[4]}, a6: {params[5]}, a7: {params[6]}, b: {params[7]}")修改这个代码要求其可以准确的求出参数
这段代码使用最小二乘法拟合了一个多元线性回归模型,其中每个自变量的系数需要通过拟合得到。为了准确地求出参数,你可以尝试以下几点:
1. 确认数据的准确性:检查读入的 Excel 文件是否正确,是否包含缺失值或异常值。
2. 调整模型:可以尝试增加或减少自变量的数量,或者对模型进行其他的调整。
3. 调整初始参数:可以尝试使用不同的初始参数,以便更好地搜索最优解。
4. 调整参数的约束条件:可以尝试添加参数的约束条件,如限制系数的范围或设置参数之间的关系等,以便更好地控制拟合结果。
matlab程序:%cf对应的af不唯一,取af大于零的时候 ar=0:0.5:10; syms x assume(x>0) %根据魔术公式求导得到ar-cr的关系,求的cr,cf a0=1.5999;a1=-0.0048;a2=0.9328;a3=4.0847;a4=44.8338; a6=-0.0076;a7=-0.1807;a8=-0.0026;a9=0.0367; a11=0.0004;a12=-0.0115;a17=0.0009; F_zr=m*9.8*lf/(lf+lr)/1000; C=a0*(5-a)/4; D2=(a1*(F_zr^2)+a2*F_zr)*a; B2=(a3*sin(2*atan(F_zr/a4))/(C*D2))*(2-a); Sh2=a8*F_zr+a9; E2=(a6*F_zr+a7); cr=(1000*C*D2*cos(C*atan(E2*(atan(B2*ar) - B2*ar) + B2*ar)).*(B2 - E2*(B2 - B2./(B2^2*ar.^2 + 1))))./((E2*(atan(B2*ar) - B2*ar) + B2*ar).^2 + 1); cf=(m*V^2*lr*cr)./(cr*(lf+lr)*(lf+lr)-m*V^2*lf); % 已知参数 F_zf=m*9.8*(lr)/(lr+lf)/1000; D1=(a1*(F_zf^2)+a2*F_zf)*a; B1=(a3*sin(2*atan(F_zf/a4))/(C*D1))*(2-a); E1=a6*F_zf+a7; % 定义af-cf函数 f=@(x)(1000*C*D1*cos(C*atan(E1*(atan(B1*x) - B1*x) + B1*x)).*(B1 - E1*(B1 - B1./(B1^2*x.^2 + 1))))./((E1*(atan(B1*x) - B1*x) + B1*x).^2 + 1) - cf; % 反求af x0=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]+1; af=fsolve(f,x0); %转化为弧度制 af1=af*pi/180;ar1=ar*pi/180; %求得侧偏角和横摆角速度 r=(V*(cetia-af1+ar1))/(lf+lr); betia=(lf*(cetia-af1)-lf*ar1)/(lf+lr); figure(5); plot(betia,r); axis([-40,40,-40,40]); title('betia-r'); xlabel('betia');ylabel('r'); hold on;报错警告: Trust-region-dogleg algorithm of FSOLVE cannot handle non-square systems; using Levenberg-Marquardt algorithm instead. > 位置:fsolve (第 342 行) 位置: untitled2 (第 36 行) No solution found. fsolve stopped because the last step was ineffective. However, the vector of function values is not near zero, as measured by the value of the function tolerance. <stopping criteria details> >> 请修改
根据错误提示,可以看出问题出现在 fsolve 函数中,具体原因是“Trust-region-dogleg algorithm”算法不能处理非方阵系统。建议尝试使用其他算法,比如 Levenberg-Marquardt 算法。可以在 fsolve 函数中添加选项来指定算法类型,例如:
```
options = optimoptions('fsolve','Algorithm','levenberg-marquardt');
af=fsolve(f,x0,options);
```
另外,可以尝试调整函数 f 的初始值 x0,或者增加迭代次数。如果仍然无法解决问题,建议检查一下输入参数是否正确,或者是否存在其他错误。
阅读全文