修改# 对每个相机图像进行目标检测 detections1 = model(image1) # 检测结果1 detections2 = model(image2) # 检测结果2 detections3 = model(image3) # 检测结果3 # 对检测结果进行筛选 filtered_detections1 = non_max_suppression(detections1, confidence_threshold, iou_threshold) filtered_detections2 = non_max_suppression(detections2, confidence_threshold, iou_threshold) filtered_detections3 = non_max_suppression(detections3, confidence_threshold, iou_threshold)报错TypeError: conv2d(): argument 'input' (position 1) must be Tensor, not numpy.ndarray
时间: 2024-03-05 08:48:58 浏览: 137
这个错误是因为YOLOv7输出的是一个numpy数组,而非PyTorch张量,因此无法在PyTorch中进一步处理。您需要将numpy数组转换为PyTorch张量,可以使用以下代码:
```
import torch
import numpy as np
# 转换图像为PyTorch张量
image1 = torch.from_numpy(np.ascontiguousarray(image1)).to(device)
image2 = torch.from_numpy(np.ascontiguousarray(image2)).to(device)
image3 = torch.from_numpy(np.ascontiguousarray(image3)).to(device)
# 检测目标
detections1 = model(image1)
detections2 = model(image2)
detections3 = model(image3)
# 转换检测结果为PyTorch张量
detections1 = [torch.from_numpy(x) for x in detections1]
detections2 = [torch.from_numpy(x) for x in detections2]
detections3 = [torch.from_numpy(x) for x in detections3]
# 对检测结果进行筛选
filtered_detections1 = non_max_suppression(detections1, confidence_threshold, iou_threshold)
filtered_detections2 = non_max_suppression(detections2, confidence_threshold, iou_threshold)
filtered_detections3 = non_max_suppression(detections3, confidence_threshold, iou_threshold)
```
这将确保您的检测结果可以在PyTorch中进一步处理。
阅读全文