写一个sv的usart代码
时间: 2023-03-16 19:44:40 浏览: 126
在Atmel Studio中,可以使用以下代码来实现SV的USART:
/* USART Init */
UCSRB |= (1<<TXEN)|(1<<RXEN); //enable transmitter and receiver
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); //set frame: 8data, 1 stop bit
UBRRL = 8; //set baud rate to 9600
/* End USART Init */
相关问题
写一段usart8使用DMA代码
以下是使用USART8和DMA进行数据传输的示例代码:
```c
#include "stm32f4xx.h"
#define BUFFER_SIZE 32
uint8_t tx_buffer[BUFFER_SIZE] = "Hello, world!";
uint8_t rx_buffer[BUFFER_SIZE];
void DMA1_Stream6_IRQHandler(void)
{
if (DMA1->HISR & DMA_HISR_TCIF6)
{
DMA1->HIFCR |= DMA_HIFCR_CTCIF6; // Clear the transfer complete flag
}
}
int main(void)
{
// Enable clock for USART8 and DMA1
RCC->APB1ENR |= RCC_APB1ENR_UART8EN;
RCC->AHB1ENR |= RCC_AHB1ENR_DMA1EN;
// Configure USART8 pins
GPIOC->MODER |= GPIO_MODER_MODE1_1; // PC1 as USART8_TX
GPIOC->MODER |= GPIO_MODER_MODE0_1; // PC0 as USART8_RX
// Configure USART8
USART8->BRR = 0x8B; // Baud rate = 115200
USART8->CR1 = USART_CR1_TE | USART_CR1_RE | USART_CR1_UE; // Enable TX, RX, USART
// Configure DMA1 Channel 5 (USART8 TX)
DMA1_Stream6->CR = 0;
DMA1_Stream6->CR |= DMA_SxCR_DIR_0; // Memory-to-peripheral mode
DMA1_Stream6->CR |= DMA_SxCR_MINC; // Increment memory address after each transfer
DMA1_Stream6->CR |= DMA_SxCR_PL_1; // Priority level = high
DMA1_Stream6->CR |= DMA_SxCR_TCIE; // Transfer complete interrupt enable
DMA1_Stream6->PAR = (uint32_t) &USART8->DR; // Peripheral address
DMA1_Stream6->M0AR = (uint32_t) tx_buffer; // Memory address
DMA1_Stream6->NDTR = BUFFER_SIZE; // Number of data to transfer
// Enable DMA1 Channel 5 (USART8 TX)
DMA1_Stream6->CR |= DMA_SxCR_EN;
// Wait for TX DMA transfer complete
while (!(DMA1->HISR & DMA_HISR_TCIF6));
// Clear the transfer complete flag
DMA1->HIFCR |= DMA_HIFCR_CTCIF6;
// Configure DMA1 Channel 2 (USART8 RX)
DMA1_Stream1->CR = 0;
DMA1_Stream1->CR |= DMA_SxCR_DIR_1; // Peripheral-to-memory mode
DMA1_Stream1->CR |= DMA_SxCR_MINC; // Increment memory address after each transfer
DMA1_Stream1->CR |= DMA_SxCR_PL_1; // Priority level = high
DMA1_Stream1->CR |= DMA_SxCR_TCIE; // Transfer complete interrupt enable
DMA1_Stream1->PAR = (uint32_t) &USART8->DR; // Peripheral address
DMA1_Stream1->M0AR = (uint32_t) rx_buffer; // Memory address
DMA1_Stream1->NDTR = BUFFER_SIZE; // Number of data to transfer
// Enable DMA1 Channel 2 (USART8 RX)
DMA1_Stream1->CR |= DMA_SxCR_EN;
// Wait for RX DMA transfer complete
while (!(DMA1->HISR & DMA_HISR_TCIF1));
// Clear the transfer complete flag
DMA1->HIFCR |= DMA_HIFCR_CTCIF1;
// Print received data
for (int i = 0; i < BUFFER_SIZE; i++)
{
printf("%c", rx_buffer[i]);
}
while (1);
}
```
此代码将使用DMA进行USART8的数据传输,其中TX数据存储在`tx_buffer`数组中,RX数据存储在`rx_buffer`数组中。我们使用DMA1的通道5进行USART8 TX传输,并使用DMA1的通道2进行USART8 RX传输。在传输完成后,可以从`rx_buffer`中读取接收到的数据。请注意,此示例代码中未包含中断处理程序的完整实现。
写一个STM32F103的USART
以下是一个简单的STM32F103 USART的代码示例:
```
#include "stm32f10x.h"
void USART_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
// 配置GPIO引脚
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能GPIOA时钟
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // 配置PA9为TX,PA10为RX
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 配置USART
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); // 使能USART1时钟
USART_InitStructure.USART_BaudRate = 115200; // 设置波特率为115200
USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 数据位为8位
USART_InitStructure.USART_StopBits = USART_StopBits_1; // 停止位为1位
USART_InitStructure.USART_Parity = USART_Parity_No; // 无校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 无硬件流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; // 同时开启接收和发送
USART_Init(USART1, &USART_InitStructure);
USART_Cmd(USART1, ENABLE); // 使能USART
}
void USART_SendChar(char ch)
{
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待发送缓冲区为空
USART_SendData(USART1, ch); // 发送一个字节
}
char USART_ReceiveChar(void)
{
while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // 等待接收到数据
return USART_ReceiveData(USART1); // 返回接收到的数据
}
int main(void)
{
USART_Init(); // 初始化USART
while (1)
{
char ch = USART_ReceiveChar(); // 从串口接收一个字符
USART_SendChar(ch); // 发送接收到的字符
}
}
```
在上面的代码中,我们使用了USART1模块,配置了PA9和PA10引脚作为USART的TX和RX引脚。在USART_Init()函数中,我们先初始化GPIO引脚,然后配置USART的各个参数,最后使能USART。在USART_SendChar()函数中,我们等待发送缓冲区为空,然后发送一个字节。在USART_ReceiveChar()函数中,我们等待接收到数据,然后返回接收到的数据。在main()函数中,我们不断从串口接收一个字符,并将它发送回去。
这只是一个简单的USART的代码示例,实际应用中还需要根据具体需求进行配置和使用。
阅读全文