帮我写一个双目标定代码
时间: 2023-09-10 09:04:54 浏览: 143
### 回答1:
好的,以下是一个简单的双目标定代码示例,可以用来获取相机的内参和外参:
```python
import cv2
import numpy as np
# 读取左右相机的图片
img_left = cv2.imread('left.jpg')
img_right = cv2.imread('right.jpg')
# 定义棋盘格大小和点数
board_size = (9, 6)
square_size = 25 # 棋盘格方块大小,单位为毫米
# 准备棋盘格的世界坐标系
objp = np.zeros((board_size[0] * board_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:board_size[0], 0:board_size[1]].T.reshape(-1, 2) * square_size
# 检测棋盘格角点
ret_left, corners_left = cv2.findChessboardCorners(img_left, board_size, None)
ret_right, corners_right = cv2.findChessboardCorners(img_right, board_size, None)
# 如果两幅图像都成功检测到角点,则进行双目标定
if ret_left and ret_right:
# 标定相机内参
ret, mtx_left, dist_left, rvecs_left, tvecs_left = cv2.calibrateCamera([objp], [corners_left], img_left.shape[:2], None, None)
ret, mtx_right, dist_right, rvecs_right, tvecs_right = cv2.calibrateCamera([objp], [corners_right], img_right.shape[:2], None, None)
# 标定相机外参
flags = 0
flags |= cv2.CALIB_FIX_INTRINSIC # 固定相机内参
ret, _, _, _, _, R, T, E, F = cv2.stereoCalibrate([objp], [corners_left], [corners_right], mtx_left, dist_left, mtx_right, dist_right, img_left.shape[:2], flags=flags)
# 输出结果
print('相机内参左:\n', mtx_left)
print('相机内参右:\n', mtx_right)
print('相机畸变左:\n', dist_left)
print('相机畸变右:\n', dist_right)
print('旋转矩阵:\n', R)
print('平移向量:\n', T)
else:
print('无法检测到棋盘格角点')
```
请注意,这只是一个简单的示例代码,实际使用中可能需要根据具体情况进行修改和优化。另外,双目标定需要使用特殊的相机和设备,因此需要注意选择适合的硬件和软件环境。
### 回答2:
双目标定(Stereo Calibration)是指利用双目摄像机获取场景中物体的三维位置信息的过程。下面是一个简单的双目标定代码的示例,使用了OpenCV库中的函数。
```python
import cv2
def stereo_calibration(left_img_paths, right_img_paths, chessboard_size):
# 定义棋盘角点个数
num_corners = chessboard_size[0] * chessboard_size[1]
# 存储棋盘角点的3D坐标
object_points = []
# 存储左右摄像机对应的角点坐标
left_image_points = []
right_image_points = []
for left_img_path, right_img_path in zip(left_img_paths, right_img_paths):
# 读取图像
left_img = cv2.imread(left_img_path)
right_img = cv2.imread(right_img_path)
# 转换为灰度图
gray_left = cv2.cvtColor(left_img, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(right_img, cv2.COLOR_BGR2GRAY)
# 寻找角点
ret_left, corners_left = cv2.findChessboardCorners(gray_left, chessboard_size, None)
ret_right, corners_right = cv2.findChessboardCorners(gray_right, chessboard_size, None)
if ret_left and ret_right:
# 提取角点坐标
object_points.append(np.zeros((num_corners, 3), np.float32))
object_points[-1][:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2)
left_image_points.append(corners_left)
right_image_points.append(corners_right)
# 双目标定
ret, camera_matrix_left, dist_coefs_left, camera_matrix_right, dist_coefs_right, R, T, E, F = cv2.stereoCalibrate(
object_points, left_image_points, right_image_points, gray_left.shape[::-1], flags=cv2.CALIB_FIX_INTRINSIC
)
return ret, camera_matrix_left, dist_coefs_left, camera_matrix_right, dist_coefs_right, R, T, E, F
```
此代码定义了一个名为`stereo_calibration`的函数,它接受左右图像路径列表`left_img_paths`和`right_img_paths`、棋盘格尺寸`chessboard_size`作为输入。它会遍历每一对图像,对左右图像中的棋盘格进行角点检测,并将检测到的角点坐标保存起来。最后,它使用OpenCV的`stereoCalibrate`函数进行双目标定,并返回相机矩阵、畸变系数、旋转矩阵、平移向量、本质矩阵和基础矩阵等参数。
注意,此代码仅为示例,实际使用时可能需要根据具体情况进行调整和优化。
### 回答3:
双目标定(Stereo calibration)是指通过对双目相机进行一系列的标定操作,得到相机的内外参数(intrinsics and extrinsics),以便于后续的三维视觉处理,例如立体匹配,三维重建等。下面是一个简单的双目标定代码示例:
首先,导入OpenCV库和numpy库,并加载双目图像。
```python
import cv2
import numpy as np
img1 = cv2.imread('left.jpg')
img2 = cv2.imread('right.jpg')
```
然后,利用OpenCV提供的双目标定函数`stereoCalibrate()`进行双目标定。需要提供标定板的尺寸、标定板的方格大小、以及标定板在相机坐标系中的位姿等参数。
```python
# 标定板的尺寸和方格大小
board_size = (9, 6)
square_size = 0.03 # 以米为单位
# 准备用于标定的3D物体点和对应的2D图像点
object_points = [] # 3D物体点
image_points1 = [] # 左图像点
image_points2 = [] # 右图像点
# 将标定板从图像中检测出来并求出对应的内外参数
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
ret1, corners1 = cv2.findChessboardCorners(gray1, board_size, None)
ret2, corners2 = cv2.findChessboardCorners(gray2, board_size, None)
if ret1 and ret2:
object_points.append(np.zeros((np.prod(board_size), 3), np.float32))
object_points[-1][:, :2] = np.indices(board_size).T.reshape(-1, 2) * square_size
cv2.cornerSubPix(gray1, corners1, (5, 5), (-1, -1), criteria)
cv2.cornerSubPix(gray2, corners2, (5, 5), (-1, -1), criteria)
image_points1.append(corners1.reshape(-1, 2))
image_points2.append(corners2.reshape(-1, 2))
ret, camera_matrix1, distortion_coeffs1, camera_matrix2, distortion_coeffs2, rotation_matrix, translation_vector, essential_matrix, fundamental_matrix = cv2.stereoCalibrate(
object_points, image_points1, image_points2, img1.shape[:2][::-1], camera_matrix1=None,
distortion_coeffs1=None, camera_matrix2=None, distortion_coeffs2=None)
```
最后,输出结果并进行双目矫正。
```python
# 输出结果
print("左相机内参矩阵:\n", camera_matrix1)
print("左相机畸变系数:\n", distortion_coeffs1)
print("右相机内参矩阵:\n", camera_matrix2)
print("右相机畸变系数:\n", distortion_coeffs2)
print("旋转矩阵:\n", rotation_matrix)
print("平移向量:\n", translation_vector)
print("本质矩阵:\n", essential_matrix)
print("基础矩阵:\n", fundamental_matrix)
# 双目矫正
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(
camera_matrix1, distortion_coeffs1, camera_matrix2, distortion_coeffs2, img1.shape[:2][::-1],
rotation_matrix, translation_vector)
# 校正映射
map1x, map1y = cv2.initUndistortRectifyMap(camera_matrix1, distortion_coeffs1, R1, P1, img1.shape[:2][::-1], cv2.CV_32FC1)
map2x, map2y = cv2.initUndistortRectifyMap(camera_matrix2, distortion_coeffs2, R2, P2, img1.shape[:2][::-1], cv2.CV_32FC1)
# 根据校正映射对图像进行矫正
img_rectified1 = cv2.remap(img1, map1x, map1y, cv2.INTER_LINEAR)
img_rectified2 = cv2.remap(img2, map2x, map2y, cv2.INTER_LINEAR)
# 显示矫正后的图像
cv2.imshow('Rectified Image 1', img_rectified1)
cv2.imshow('Rectified Image 2', img_rectified2)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
以上是一个简单的双目标定代码示例,具体的双目标定操作需要结合实际情况进行调整和优化。
阅读全文