ax=plt.subplot(train_rows,train_cols,i)
时间: 2023-10-06 14:08:11 浏览: 97
这是一段 Python 代码,使用了 Matplotlib 库中的 subplot() 函数创建了一个包含 train_rows 行、train_cols 列的子图网格,并将第 i 个子图设为当前子图,其中 plt 为 Matplotlib 库的 pyplot 模块的别名。这段代码通常用于在一个图像窗口中创建多个子图,并对每个子图进行绘制。
相关问题
import warnings warnings.filterwarnings("ignore") %matplotlib inline sns.distplot(train_data['V0'],fit=stats.norm) ax=plt.subplot(1,2,2) res = stats.probplot(train_data['V0'], plot=plt) ax=plt.subplot(train_rows,train_cols,i) sns.distplot(train_data[col],fit=stats.norm) res = stats.probplot(train_data[col], plot=plt) ax = sns.kdeplot(train_data['V0'], color="Red", shade=True) ax = sns.kdeplot(test_data['V0'], color="Blue", shade=True) ax = ax.legend(["train","test"]) sns.regplot(x='V0', y='target', data=train_data, ax=ax, scatter_kws={'marker': '.', 's':3, 'alpha':0.3}, line_kws={'color': 'k'} ); sns.distplot(train_data['V0'].dropna()) ax = sns.kdeplot(train_data[col], color="Red", shade=True) sns.regplot(x=col, y='target', data=train_data, ax=ax, scatter_kws={'marker':'.','s':3,'alpha':0.3}, line_kws={'color':'k'}); data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1) train_corr = data_train1.corr() train_corr 解释每一行代码的意思
这段代码涉及到了Python数据分析和可视化的相关库,主要作用是对训练数据进行分析和可视化。
1. `import warnings`:导入Python的警告模块。
2. `warnings.filterwarnings("ignore")`:忽略所有的警告信息。
3. `%matplotlib inline`:使用Jupyter Notebook的魔法命令,将matplotlib绘制的图形显示在notebook页面中。
4. `sns.distplot(train_data['V0'],fit=stats.norm)`:使用seaborn库绘制训练数据集中'V0'这一列的直方图,并拟合正态分布曲线。
5. `ax=plt.subplot(1,2,2)`:在当前图形中添加一个子图,子图为1行2列,当前子图为第2列。
6. `res = stats.probplot(train_data['V0'], plot=plt)`:使用scipy库绘制训练数据集中'V0'这一列的概率图。
7. `sns.distplot(train_data[col],fit=stats.norm)`:使用seaborn库绘制训练数据集中某一列的直方图,并拟合正态分布曲线。
8. `res = stats.probplot(train_data[col], plot=plt)`:使用scipy库绘制训练数据集中某一列的概率图。
9. `ax = sns.kdeplot(train_data['V0'], color="Red", shade=True)`:使用seaborn库绘制训练数据集中'V0'这一列的密度图。
10. `ax = sns.kdeplot(test_data['V0'], color="Blue", shade=True)`:使用seaborn库绘制测试数据集中'V0'这一列的密度图。
11. `ax = ax.legend(["train","test"])`:给密度图添加图例。
12. `sns.regplot(x='V0', y='target', data=train_data, ax=ax, scatter_kws={'marker': '.', 's':3, 'alpha':0.3}, line_kws={'color': 'k'})`:使用seaborn库绘制训练数据集中'V0'这一列与'target'列之间的回归关系图。
13. `sns.distplot(train_data['V0'].dropna())`:使用seaborn库绘制训练数据集中'V0'这一列的直方图,并删除缺失值。
14. `ax = sns.kdeplot(train_data[col], color="Red", shade=True)`:使用seaborn库绘制训练数据集中某一列的密度图。
15. `sns.regplot(x=col, y='target', data=train_data, ax=ax, scatter_kws={'marker':'.','s':3,'alpha':0.3}, line_kws={'color':'k'})`:使用seaborn库绘制训练数据集中某一列与'target'列之间的回归关系图。
16. `data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)`:删除训练数据集中'V5'、'V9'、'V11'、'V17'、'V22'、'V28'这6列,并将处理后的数据集赋值给data_train1变量。
17. `train_corr = data_train1.corr()`:计算data_train1中各列之间的相关系数,并将结果保存到train_corr变量中。
def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array, true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100 * np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array, true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') print("验证预测结果:") i = 12 plt.figure(figsize=(6, 3)) plt.subplot(1, 2, 1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1, 2, 2) plot_value_array(i, predictions[i], test_labels) plt.show() num_rows = 5 num_cols = 3 num_images = num_rows * num_cols plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows)) for i in range(num_images): plt.subplot(num_rows, 2 * num_cols, 2 * i + 1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2 * num_cols, 2 * i + 2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() # 使用训练好的模型对单个图像进行预测 img = test_images[1] print(img.shape) # tf.keras 模型经过了优化,可同时对一个批或一组样本进行预测 img = (np.expand_dims(img, 0)) print(img.shape) # 增加相应标签 predictions_single = probability_model.predict(img) print(predictions_single) plot_value_array(1, predictions_single[0], test_labels) _ = plt.xticks(range(10), class_names, rotation=45)
这段代码的作用是用来展示模型对测试数据集的预测结果。首先定义了两个函数plot_image和plot_value_array,用于可视化展示预测结果。然后调用这两个函数来展示第12张测试图片的预测结果和对应的概率分布情况。接着定义了num_rows、num_cols和num_images三个变量,分别表示展示预测结果的行数、列数和总图片数。最后使用for循环展示num_images张测试图片的预测结果和对应的概率分布情况。其中,使用了tight_layout函数来调整子图之间的间距,使得展示效果更加美观。最后使用训练好的模型对单个图片进行了预测,并展示了预测结果和对应的概率分布情况。
阅读全文