sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray")
时间: 2024-02-26 21:54:23 浏览: 191
这段代码的作用是从 `training_data` 数据集中随机选择一个样本,并将其对应的图像和标签显示在 Matplotlib 中的一个子图中。
具体来说,前一行代码的作用已经解释过了,即随机选择一个样本并返回其在数据集中的索引。接下来的一行代码中,将随机选择的样本通过 `training_data[sample_idx]` 语句获取,其中 `img` 表示该样本的图像,`label` 表示该样本的标签。接下来,将该子图添加到 Matplotlib 的 `figure` 对象中,并设置其在子图矩阵中的位置。然后,设置该子图的标题为该样本的标签,将坐标轴关闭,并使用 `imshow()` 方法将该样本的图像显示出来。最后,将 `img` 转换为灰度图像,并使用 `cmap` 参数设置颜色映射。
这段代码通常用于可视化数据集中的样本,以便更好地理解数据集的特点和结构。
相关问题
sample_idx = torch.randint(len(training_data), size=(1,)).item()
这段代码的作用是从 `training_data` 数据集中随机选择一个样本,并返回该样本在数据集中的索引。具体来说,它使用 PyTorch 中的 `torch.randint()` 函数生成一个随机整数,该随机整数的范围是 0 到 `training_data` 数据集的长度减1,然后使用 `.item()` 方法将该随机整数转换为 Python 中的标量值。这个随机整数就是随机选择的样本在数据集中的索引。
class CustomDataset(Dataset): def __init__(self, num_samples, input_dim, output_dim): self.num_samples = num_samples self.input_dim = input_dim self.output_dim = output_dim def __len__(self): return self.num_samples def __getitem__(self, idx): input_data = torch.randint(0, self.input_dim, (10,)) output_data = torch.randint(0, self.output_dim, (10,)) return input_data, output_data 中生成的input_data和output_data的type是多少
在这段代码中,`input_data` 和 `output_data` 的类型都是 `torch.Tensor`。
`torch.randint(0, self.input_dim, (10,))` 生成的 `input_data` 是一个大小为 (10,) 的一维张量,其中每个元素都是从闭区间 [0, self.input_dim) 中随机选取的整数。因此,`input_data` 的类型是 `torch.Tensor`。
同样地,`torch.randint(0, self.output_dim, (10,))` 生成的 `output_data` 也是一个大小为 (10,) 的一维张量,其中每个元素都是从闭区间 [0, self.output_dim) 中随机选取的整数。因此,`output_data` 的类型同样是 `torch.Tensor`。
因此,在 `__getitem__` 方法中返回的 `input_data` 和 `output_data` 的类型都是 `torch.Tensor`。
阅读全文