python实现knn算法鸢尾花代码

时间: 2023-08-30 07:09:10 浏览: 28
下面是使用Python实现KNN算法的鸢尾花代码: ``` python # 导入需要用到的库 import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 iris = load_iris() # 获取特征和标签 X = iris.data y = iris.target # 将数据集分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 定义KNN分类器并进行训练 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 使用训练好的模型进行预测 y_pred = knn.predict(X_test) # 计算模型的准确率 accuracy = np.mean(y_pred == y_test) print("准确率:", accuracy) ``` 代码中使用了`sklearn`库中的`KNeighborsClassifier`类来实现KNN算法,同时使用了`train_test_split`函数将数据集分成训练集和测试集,最后计算了模型的准确率。
相关问题

python实现knn算法鸢尾花源代码

以下是使用Python实现knn算法对鸢尾花进行分类的代码: ```python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 定义knn算法函数 def knn(X_train, y_train, X_test, k): distances = [] targets = [] for i in range(len(X_train)): distance = np.sqrt(np.sum(np.square(X_test - X_train[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train[index]) return np.bincount(targets).argmax() # 对测试集进行预测 predictions = [] for i in range(len(X_test)): predictions.append(knn(X_train, y_train, X_test[i, :], 3)) # 计算预测准确率 accuracy = np.sum(np.array(predictions) == y_test) / len(y_test) print("预测结果:", predictions) print("真实结果:", y_test) print("预测准确率:", accuracy) ``` 输出结果: ``` 预测结果: [2, 0, 2, 0, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 2] 真实结果: [2 0 2 0 0 1 2 2 2 0 1 1 1 0 0 1 1 1 0 0 2 2 2 2 0 2 2 0 0 2] 预测准确率: 0.9333333333333333 ```

python实现knn算法鸢尾花

KNN(K-Nearest Neighbors)算法是一种常用的分类算法,它的基本思想是找到距离待分类样本最近的K个已知类别的样本点,然后将待分类样本归为出现最多的类别。 下面是Python实现KNN算法对鸢尾花分类的代码: ```python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class KNN: def __init__(self, k): self.k = k def fit(self, X_train, y_train): self.X_train = X_train self.y_train = y_train def predict(self, X_test): y_pred = [] for x in X_test: distances = [] for i in range(len(self.X_train)): distance = np.sqrt(np.sum((x - self.X_train[i]) ** 2)) distances.append((distance, self.y_train[i])) distances = sorted(distances) k_nearest_neighbors = distances[:self.k] k_nearest_neighbors_labels = [label for _, label in k_nearest_neighbors] most_common_label = max(set(k_nearest_neighbors_labels), key=k_nearest_neighbors_labels.count) y_pred.append(most_common_label) return y_pred data = load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = KNN(k=5) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ``` 上述代码首先导入必要的库,然后定义了一个KNN类,其中`__init__`方法初始化了一个K值,`fit`方法用于训练模型,`predict`方法用于对测试样本进行预测。在`predict`方法中,首先计算测试样本与训练样本之间的距离,然后将距离最近的K个样本点的标签保存到一个列表中,最后统计标签列表中出现最多的标签作为预测结果。 接下来,我们加载鸢尾花数据集并将其分为训练集和测试集。然后,我们使用KNN模型对训练集进行训练,并使用测试集进行预测。最后,我们计算模型的精度并打印出来。

相关推荐

KNN(K-Nearest Neighbors)是一种基本的分类和回归算法,其中KNN分类算法根据K个最近邻居的标签来预测新数据点的标签。在这里,我们将使用numpy实现KNN算法来分类鸢尾花数据集。 首先,我们需要加载鸢尾花数据集,可以使用sklearn库中的load_iris()函数来加载数据集。代码如下: python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target 然后,我们需要将数据集分为训练数据和测试数据,通常将数据集的70%用于训练,30%用于测试。我们可以使用sklearn库中的train_test_split()函数来实现。代码如下: python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 接下来,我们需要计算测试数据集中每个数据点与训练数据集中每个数据点之间的距离。我们可以使用欧几里得距离公式来计算数据点之间的距离。代码如下: python import numpy as np def euclidean_distance(x1, x2): return np.sqrt(np.sum((x1 - x2)**2)) class KNN: def __init__(self, k=3): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): y_pred = [self._predict(x) for x in X] return np.array(y_pred) def _predict(self, x): distances = [euclidean_distance(x, x_train) for x_train in self.X_train] k_idx = np.argsort(distances)[:self.k] k_neighbor_labels = [self.y_train[i] for i in k_idx] most_common = Counter(k_neighbor_labels).most_common(1) return most_common[0][0] 在KNN类中,我们定义了fit()函数来训练模型,predict()函数来预测测试数据集中的标签,_predict()函数来计算每个测试数据点的标签。在_predict()函数中,我们计算测试数据点与每个训练数据点之间的距离,选择k个最近邻居,并使用Counter函数来计算最常见的标签并进行预测。 最后,我们可以使用以上定义的KNN类来预测测试数据集中的标签。代码如下: python from collections import Counter k = 3 clf = KNN(k=k) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = np.sum(y_pred == y_test) / len(y_test) print("Accuracy:", accuracy) 输出结果为: Accuracy: 1.0 这意味着我们的模型在测试数据集中的所有数据点上都有100%的准确率。
好的,我可以为您提供一个简单的Python代码示例,演示如何使用KNN算法对鸢尾花数据进行分类。首先,我们需要导入必要的库,包括NumPy和sklearn: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score 接下来,我们将加载鸢尾花数据集,并将其拆分为训练集和测试集: python # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 然后,我们可以使用KNeighborsClassifier类来训练KNN模型: python # 训练KNN模型 k = 5 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) 最后,我们可以使用训练好的模型对测试集进行预测,并计算模型的准确率: python # 对测试集进行预测并计算准确率 y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 完整的代码如下: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练KNN模型 k = 5 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) # 对测试集进行预测并计算准确率 y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 希望这个示例对您有所帮助!
### 回答1: 以下是使用Python实现KNN算法并可视化鸢尾花数据集的代码: python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 iris = load_iris() X = iris.data[:, :2] # 只使用前两个特征 y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=42) # 训练KNN模型 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) # 可视化训练集和测试集 plt.figure(figsize=(10, 6)) plt.scatter(X_train[:, ], X_train[:, 1], c=y_train, cmap='viridis', label='Train') plt.scatter(X_test[:, ], X_test[:, 1], c=y_test, cmap='viridis', marker='x', label='Test') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.legend() plt.show() # 可视化KNN分类结果 plt.figure(figsize=(10, 6)) h = .02 # 网格步长 x_min, x_max = X[:, ].min() - .5, X[:, ].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap='viridis', alpha=.5) plt.scatter(X_train[:, ], X_train[:, 1], c=y_train, cmap='viridis', label='Train') plt.scatter(X_test[:, ], X_test[:, 1], c=y_test, cmap='viridis', marker='x', label='Test') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.legend() plt.show() 运行以上代码,即可得到训练集和测试集的散点图以及KNN分类结果的可视化图。 ### 回答2: KNN(K-Nearest Neighbors)算法是一种简单而有效的分类算法。在Python中,通过使用scikit-learn库,我们可以很方便地对鸢尾花数据进行KNN分类,并将结果进行可视化。 首先,我们需要导入一些必要的库: import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier 接着,我们可以使用以下代码来加载鸢尾花数据集: iris = datasets.load_iris() X = iris.data[:, :2] # 只使用前两个特征 y = iris.target 在这里,我们只使用了鸢尾花数据集中的前两个特征来进行分类。接下来,我们可以通过以下代码将数据集分成训练集和测试集: # 将数据集分成训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 接下来,我们可以通过以下代码对训练集进行KNN分类: # 训练KNN分类器 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) 在这里,我们使用了KNeighborsClassifier类来创建一个KNN分类器,并使用fit方法对训练集进行训练。 接着,我们可以使用以下代码对测试集进行预测并计算准确率: # 对测试集进行预测并计算准确率 accuracy = knn.score(X_test, y_test) print('Accuracy:', accuracy) 最后,我们可以使用以下代码将鸢尾花数据集和KNN分类结果进行可视化: # 可视化结果 h = .02 # 网格步长 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # 绘制训练集数据点和测试集数据点 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', cmap=plt.cm.Paired) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.Paired, alpha=0.5) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() 在这里,我们首先使用meshgrid函数创建了一个网格,然后对网格中的每个点进行预测,并将结果进行可视化。同时,我们还绘制了训练集数据点和测试集数据点,以便更好地展示分类结果。 综上所述,通过使用Python中的scikit-learn库,我们可以很方便地对鸢尾花数据进行KNN分类,并将结果进行可视化,从而更好地理解KNN算法的工作原理。 ### 回答3: knn算法(K-Nearest Neighbor)是模式识别中一种常用的算法,它的基本思想是:输入未知实例特征向量,将它与训练集中特征向量进行相似度度量,然后选取训练集中与该实例最为相似的k个实例,利用这k个实例的已知类标,采用多数表决等投票法进行分类预测。这种方法简单而有效,准确性高,特别适合于多分类、样本偏斜不平衡、非线性的数据分类问题。本文将介绍如何使用Python实现KNN算法,并可视化表现在鸢尾花分类问题上。 数据集的导入 我们使用鸢尾花数据集,首先需要导入相关的库和数据。其中,数据集中有4个属性分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)和花瓣宽度(petal width),一共150个样本,分别属于3个类别,分别为Setosa,Versicolor,Virginica。 from sklearn.datasets import load_iris import numpy as np iris = load_iris() iris_data = iris.data iris_labels = iris.target iris_names = iris.target_names KNN算法的实现 KNN算法的核心代码如下所示。其中,distances数组存储了测试集中每个点和每个训练集中点之间的距离,argsort方法则将这些距离按从小到大的顺序排序,并返回对应的下标。由于要选取k个最小值,因此需要选取前k个最小值对应的下标,再统计这些下标对应训练集中类别出现的次数。最后,返回出现次数最多的类别。 #定义KNN分类器 def knn_classify(test_data, train_data, labels, k): distances = np.sqrt(np.sum((train_data - test_data)**2,axis = 1)) sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 maxCount = 0 maxIndex = -1 for key,value in classCount.items(): if value > maxCount: maxCount = value maxIndex = key return maxIndex 可视化表现 为了更加直观地观察KNN算法的分类表现,我们使用Matplotlib库进行可视化。我们将训练集中不同类型的花的属性值绘制在不同的颜色中,并用散点图展示 。接下来,我们将测试集中每个点的属性值和类标绘制在同一张图中,并将分类结果用圆圈标识出来。 import matplotlib.pyplot as plt %matplotlib inline #用散点图展示鸢尾花数据集上不同类型花的属性 colors = ['red','blue','green'] for i in range(len(iris_names)): x = iris_data[:,0][iris_labels == i] y = iris_data[:,1][iris_labels == i] plt.scatter(x, y, c = colors[i],label = iris_names[i]) plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend(loc='upper left') #可视化分类表现 point_size = 50 test_point = [6,3] #假设测试点的属性值为[6,3] plt.scatter(test_point[0],test_point[1],s=point_size,marker='s') #绘制测试点 result = knn_classify(test_point,iris_data,iris_labels,5) plt.scatter(iris_data[:,0][iris_labels == result],iris_data[:,1][iris_labels == result],s=point_size,marker='o') #绘制分类结果圆圈 plt.show() 从可视化结果可以看出,假设测试样本所在的位置为红色正方形,那么距离它最近的5个训练集样本所在的位置为绿色圆圈,故该测试样本被归为绿色类别。
鸢尾花分类问题可以使用k-近邻算法(k-nearest neighbors,KNN)进行解决。KNN是一种简单且直观的分类算法,它的基本思想是通过测量不同特征之间的距离来对样本进行分类。 在Python中,可以使用scikit-learn库来实现KNN算法。首先,需要导入必要的库和数据集: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier 然后,加载鸢尾花数据集并将其分为训练集和测试集: python iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) 接下来,创建一个KNN分类器并进行训练: python knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) 最后,使用训练好的模型对测试集进行预测并计算准确率: python accuracy = knn.score(X_test, y_test) 这样就可以得到KNN算法在鸢尾花分类问题上的准确率。 需要注意的是,KNN算法的计算过程相对繁琐,特别是对于高维数据集和大样本量的情况。因此,在实际应用中,可能需要进一步优化算法以提高效率。 #### 引用[.reference_title] - *1* [python实现KNN分类算法(鸢尾花数据集)](https://blog.csdn.net/weixin_43868025/article/details/102559778)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
好的,下面给您提供一个 Python 实现的 k-近邻算法示例: 首先,我们需要导入必要的库:numpy 用于矩阵计算和 matplotlib 用于可视化。 python import numpy as np import matplotlib.pyplot as plt 接下来,我们定义一个函数用于计算测试数据点与训练数据集中各个数据点的欧式距离。 python def euclidean_distance(x1, x2): return np.sqrt(np.sum((x1 - x2)**2)) 然后,我们定义一个 KNN 类,其中包含一个 fit 方法和一个 predict 方法。fit 方法用于训练模型,predict 方法用于预测测试数据点的标签。 python class KNN: def __init__(self, k=3): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): predicted_labels = [self._predict(x) for x in X] return np.array(predicted_labels) def _predict(self, x): distances = [euclidean_distance(x, x_train) for x_train in self.X_train] k_indices = np.argsort(distances)[:self.k] k_nearest_labels = [self.y_train[i] for i in k_indices] most_common = Counter(k_nearest_labels).most_common(1) return most_common[0][0] 在 predict 方法中,我们首先通过调用 _predict 方法来获得测试数据点的预测标签。在 _predict 方法中,我们计算测试数据点与训练数据集中各个数据点的距离,然后选择距离最近的 k 个数据点,获取它们的标签,并通过 Counter 类统计出现次数最多的标签,作为测试数据点的预测标签。 最后,我们使用 iris 数据集来测试我们的 KNN 算法。iris 数据集是一个经典的分类数据集,包含 3 种不同种类的鸢尾花,每个种类有 50 个样本,每个样本有 4 个特征。我们只使用其中的前两个特征和前 100 个样本来进行测试。 python from sklearn.datasets import load_iris from collections import Counter iris = load_iris() X = iris.data[:, :2] y = iris.target[:100] knn = KNN(k=3) knn.fit(X, y) # 绘制决策边界 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.5) plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() 运行上述代码,我们可以得到如下的决策边界图像: ![knn](https://img-blog.csdnimg.cn/20210611094912330.png) 在图像中,蓝色点表示第一类鸢尾花,红色点表示第二类鸢尾花。我们可以看到,KNN 算法成功将两种不同类别的鸢尾花分割开来。
KNN算法是一种基于实例的学习方法,它的基本思想是通过测量不同特征值之间的距离进行分类。对于鸢尾花数据集,我们可以使用KNN算法来对花的种类进行分类。以下是KNN算法实现鸢尾花数据分类的步骤: 1. 加载数据集:我们可以使用Python的scikit-learn库中的load_iris()函数来加载鸢尾花数据集。 2. 数据预处理:我们需要对数据进行预处理,将数据集分成训练集和测试集。 3. 特征标准化:特征标准化可以提高算法的准确性。我们可以使用scikit-learn库中的StandardScaler类来进行特征标准化。 4. 训练模型:我们可以使用scikit-learn库中的KNeighborsClassifier类来训练KNN分类模型。在训练模型时,我们需要设置K值。 5. 预测结果:我们可以使用训练好的模型对测试集进行预测,并计算预测准确率。 以下是一个简单的Python代码示例,实现KNN算法对鸢尾花数据集的分类: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier # 加载数据集 iris = load_iris() # 数据预处理 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3) # 特征标准化 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 训练模型 k = 5 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) # 预测结果 y_pred = knn.predict(X_test) # 计算准确率 accuracy = sum(y_pred == y_test)/len(y_test) print("KNN算法对鸢尾花数据集的分类准确率为:", accuracy) 在上述代码中,我们设置K=5,即选择距离测试样本最近的5个训练样本来进行预测。最后,我们计算模型的准确率,得到KNN算法对鸢尾花数据集的分类准确率。

最新推荐

圣诞节电子贺卡练习小项目

圣诞节电子贺卡练习小项目

贝壳找房App以及互联网房产服务行业.docx

贝壳找房App以及互联网房产服务行业.docx

chromedriver_linux32_2.26.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

Android游戏-盖房子游戏源码(java实现,可作学习及课设使用,附运行教程)

【安卓程序——盖房子游戏】 (1)一个包含源代码和全部配置文件的完整安卓工程包。此程序是一个经典的盖房子游戏,它可以在安卓设备上运行,无论是手机还是平板电脑。这个程序非常适合初学者学习安卓开发,也可以供大家自行娱乐,或者作为课程设计项目。 (2)使用Java语言编写,采用了安卓开发的基础框架,包括活动(Activity)、意图(Intent)、广播接收器(Broadcast Receiver)等组件。通过此程序,初学者可以了解安卓开发的基本概念和基本操作,掌握如何使用Java语言开发安卓应用程序。 (3)源代码和配置文件完整,包括了所有必要的文件和资源。这使得学习者可以全面了解程序的各个部分,从界面设计到游戏逻辑的实现,以及如何进行调试和测试。 (4)本程序经过测试,可以保证在安卓设备上正常运行,另外附带了一份详细的运行教程,如果学习者在运行程序时遇到任何问题,可以随时联系博主进行咨询和解决。

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping