但上面这代码报错Unable to load weights saved in HDF5 format into a subclassed Model which has not created its variables yet. Call the Model first, then load the weights.怎么改
时间: 2024-03-07 08:49:32 浏览: 128
解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题
这个错误提示是因为模型是通过继承 `Model` 类来创建的,而不是使用 `Sequential` 模型。因此,不能直接使用 `model.load_weights()` 方法来加载权重。可以使用 `tf.keras.models.load_model()` 函数来加载整个模型及其权重,代码如下:
```
import tensorflow as tf
import pickle
def data(Domain):
valid_chars = pickle.load(open('dictionary.plk','rb'))
Domain = [[valid_chars[y] for y in x] for x in Domain]
Domain = sequence.pad_sequences(Domain, maxlen=65)
return Domain
def run(Domain):
Domains = data(Domain)
model = tf.keras.models.load_model('Mymodel.h5')
predictions = model.predict(Domains)
return predictions
if __name__ == "__main__":
print(run(['baidu.com'])) # Run with 1 to make it fast
```
在这个版本的代码中,我们使用 `tf.keras.models.load_model()` 函数来加载整个模型及其权重,然后使用加载的模型进行预测。
阅读全文