% STFT变换 Z = stft(z, nfft); % STFT幅度谱和相位谱 Z_mag = abs(Z); Z_phase = angle(Z); % 幅度谱转换为线性幅度 Z_mag_lin = db2mag(Z_mag); % 设置阈值 Z_mag_thresh = max(Z_mag_lin) * 10^(-25/20); % 生成掩码 Z_mask = bsxfun(@gt, Z_mag_lin, Z_mag_thresh); % 对幅度谱进行掩码 Z_mag_masked = Z_mag .* Z_mask; % 对每一列进行平滑处理 smooth_window = 60; Z_mag_smoothed = smoothdata(Z_mag_masked, 1, 'movmean', smooth_window); % 将平滑后的掩码谱应用到幅度谱上 Z_mag_masked_smoothed = Z_mag_smoothed .* Z_mask; % 掩码为0以下的部分置为0 Z_mag_masked_smoothed(Z_mag_masked_smoothed < 0) = 0; % 生成掩码谱 Z_masked = Z_mag_masked_smoothed .* exp(1i*Z_phase); % iSTFT变换 z_enhanced = istft(Z_masked, nfft); % 重构后的语音 g = real(istft(Y_mag .* Z_masked, nfft)); % 归一化 g = g / max(abs(g)); % 播放语音 sound(g, fs);

时间: 2023-06-26 09:10:29 浏览: 57
这段代码是一个语音增强的处理过程,具体步骤如下: 1. 对原始语音信号进行 STFT 变换,得到幅度谱和相位谱。 2. 将幅度谱转换为线性幅度,并设置一个阈值。 3. 生成掩码,将小于阈值的部分置为0,大于阈值的部分置为1。 4. 对幅度谱进行掩码,得到掩码谱。 5. 对掩码谱进行平滑处理,平滑窗口为60。 6. 将平滑后的掩码谱应用到幅度谱上,得到掩码后的幅度谱。 7. 对掩码为0以下的部分置为0。 8. 生成掩码谱,将掩码后的幅度谱与相位谱相乘。 9. 对掩码谱进行 iSTFT 反变换,得到增强后的语音信号。 10. 对增强后的语音信号进行归一化,播放语音信号。 需要注意的是,这段代码中使用了 STFT 和 iSTFT 函数,需要提供一个 nfft 参数,这个参数表示 STFT 和 iSTFT 窗口的大小,一般情况下 nfft 的值为 2 的整数次幂,可以根据实际需求进行设置。另外,这段代码中还使用了 smoothdata 函数对掩码谱进行平滑处理,这个函数需要 Matlab 2016b 或以上版本才支持。
相关问题

%% 掩膜部分 Z = stft(z, nfft); % STFT变换 Z_mag = abs(Z); % STFT幅度谱 Z_phase = angle(Z); % STFT相位谱 Z_mag_db = 20*log10(Z_mag); % 将幅度谱转换为分贝 Z_mag_db_thresh = max(Z_mag_db) - 25; % 设置阈值 Z_mag_db_thresh(Z_mag_db_thresh<0) = 0; % 阈值为0以下的部分置为0 Z_mag_db_mask = Z_mag_db > Z_mag_db_thresh; % 生成掩码 Z_mag_masked = Z_mag .* Z_mag_db_mask; % 对幅度谱进行掩码 Z_mag_masked(Z_mag_masked<0) = 0; % 掩码为0以下的部分置为0 Z_masked = Z_mag_masked .* exp(1i*Z_phase); % 生成掩码谱 z_enhanced = istft(Z_masked, nfft); % iSTFT变换 G= Y_mag.*Z_masked g=istft(G,nfft); %得到重构后的语音 g=g/max(abs(g)); pause(3) sound(g,fs)这段代码的掩码谱怎么平滑处理

掩码谱的平滑处理可以使用一些信号处理方法,例如平均滤波、中值滤波等。以下是一个简单的平均滤波示例: ```matlab % 定义平滑窗口大小 smooth_window = 5; % 对每一列进行平滑处理 for i = 1:size(Z_mag_masked, 2) Z_mag_masked(:,i) = smooth(Z_mag_masked(:,i), smooth_window); end % 将平滑后的掩码谱应用到幅度谱上 Z_mag_masked_smooth = Z_mag .* (Z_mag_masked > 0); ``` 这里我们使用了 Matlab 自带的 `smooth` 函数进行平滑处理,然后将平滑后的掩码谱应用到原始幅度谱上,得到平滑后的掩码谱。注意,平滑后的掩码谱中小于等于 0 的部分需要被置为 0,以确保不会对语音增强产生负面影响。

stft_mat = np.transpose(stft_mat)有什么用

这行代码将矩阵 `stft_mat` 进行转置操作,将其行与列的位置交换。这通常是因为在处理音频等数据时,时间通常被表示为矩阵的行,而频率则被表示为矩阵的列。 具体来说,STFT(短时傅里叶变换)通常被用于将音频信号从时域转换到频域,这意味着它将音频信号分解为一系列频率成分。STFT 的结果是一个二维矩阵,其中每列代表一段时间内的频率成分,每行代表不同的频率。为了方便后续处理,通常会将其转置,使得每行表示一个频率成分,每列表示不同的时间段,这样可以更方便地进行后续计算和处理。

相关推荐

下面给出一段代码:class AudioDataset(Dataset): def init(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def getitem(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def len(self): return len(self.train_data)。请给出详细注释

下面给出一段代码:class AudioDataset(Dataset): def __init__(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def __getitem__(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def __len__(self): return len(self.train_data)。请给出详细解释和注释

最新推荐

recommend-type

96_基于Android的美食推荐 APP-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

南京大学分布式系统课程实验.zip

南京大学分布式系统课程实验.zip
recommend-type

mysql开发教程&案例&相关项目概要介绍.docx

MySQL作为一款广泛使用的开源关系型数据库管理系统,在软件开发中扮演着核心角色。以下是对MySQL开发教程、案例及相关项目概要的综合介绍: ### MySQL开发教程概览 **黑马程序员MySQL全套教程** - **目标群体**:适合零基础至进阶水平的学习者,特别是希望从事IT行业并期望通过MySQL技能提高薪资的学员。 - **课程内容**: - **学前须知**:要求学员具备Python基础知识及网络多线程知识。 - **开发工具**:使用Navicat(MySQL的图形化界面客户端)及MySQL自身的客户端与服务端(推荐版本5.0左右)。 - **课程重点**:涵盖MySQL的图形界面操作、终端CRUD操作,以及通过Python与MySQL交互实现黑马订单管理系统的开发,包括查询、增加、删除、修改订单等功能。 - **课程目标**: - 理解数据库分类、MySQL的应用场景。 - 安装并使用Navicat进行数据操作。 - 安装MySQL并进行终端的数据库操作。 - Python与MySQL的交互编程。 - 完成黑马订单管理系统的实战项目。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

从键盘输入一段英文字符串,其中包含多个字母‘h',请编写程序利用正则表达式,将英文字符串中的’h'全部改为‘H’

好的,我可以帮您解决这个问题。 您可以使用 Python 编写一个程序来实现这个功能。具体步骤如下: 1. 首先导入 re 模块,这个模块是 Python 中用于处理正则表达式的模块。 2. 然后定义一个包含英文字符串的变量,例如: text = "This is a string containing multiple h's." 3. 接下来,使用 re.sub() 方法来进行替换操作。re.sub() 方法的第一个参数是正则表达式,第二个参数是替换的字符或字符串,第三个参数是被替换的字符串。在这个例子里,我们需要将所有的小写字母 h 替换成大写字母 H,所以正则表达式可以写成
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、