class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, D, H, W, C) window_size (tuple[int]): window size Returns: windows: (B*num_windows, window_size*window_size, C) """ B, D, H, W, C = x.shape x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) return windows def window_reverse(windows, window_size, B, D, H, W): """ Args: windows: (B*num_windows, window_size, window_size, C) window_size (tuple[int]): Window size H (int): Height of image W (int): Width of image Returns: x: (B, D, H, W, C) """ x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) return x def get_window_size(x_size, window_size, shift_size=None): use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size)
时间: 2023-05-21 08:02:16 浏览: 231
这是一个关于 PyTorch 的代码,其中包含了一个 MLP 模型和一些用于窗口分割和反转的函数。其中 MLP 模型包含了一个线性层和一个激活函数,以及一个 dropout 层。窗口分割和反转的函数用于将输入张量分割成多个窗口,并将这些窗口重新组合成一个张量。这些函数可以用于实现一些图像处理任务,例如局部感知机制。
相关问题
class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden
features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.drop = nn.Dropout(drop) self.fc2 = nn.Linear(hidden_features, out_features) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) return x
这是一个 PyTorch 中的 MLP 模型,它包含两个全连接层和一个激活函数层。输入特征数为 in_features,隐藏层特征数为 hidden_features,输出特征数为 out_features。如果 hidden_features 和 out_features 没有指定,则默认与输入特征数相同。激活函数层使用 GELU,dropout 概率为 drop。forward 函数实现了模型的前向传播。
class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop)是什么意思
这段代码定义了一个多层感知机(Multi-Layer Perceptron,MLP)的神经网络模型。下面是每个部分的解释:
- `class Mlp(nn.Module):`:定义了一个名为`Mlp`的类,并继承自`nn.Module`,这意味着它是一个PyTorch模型。
- `def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):`:定义了类的初始化函数,用于初始化模型的参数。
- `super().__init__()`:调用父类(`nn.Module`)的初始化函数。
- `out_features = out_features or in_features`和`hidden_features = hidden_features or in_features`:如果未指定输出特征和隐藏特征的数量,则将它们设置为输入特征的数量。
- `self.fc1 = nn.Linear(in_features, hidden_features)`:定义了一个全连接层(`nn.Linear`),它将输入特征映射到隐藏特征。
- `self.act = act_layer()`:定义激活函数层,这里使用的是`act_layer`参数指定的激活函数(默认为`nn.GELU`)。
- `self.fc2 = nn.Linear(hidden_features, out_features)`:定义了另一个全连接层,它将隐藏特征映射到输出特征。
- `self.drop = nn.Dropout(drop)`:定义了一个Dropout层,用于在训练过程中随机丢弃一部分神经元,以减少过拟合风险。
这段代码的作用是创建一个MLP模型,并定义了模型的结构和参数。具体的使用方式需要根据实际情况进行调用和训练。
阅读全文
相关推荐
















