class ContrastiveModel(nn.Module): def __init__(self, backbone, head='mlp', features_dim=128): super(ContrastiveModel, self).__init__() self.backbone = backbone['backbone'] self.backbone_dim = backbone['dim'] self.head = head if head == 'linear': self.contrastive_head = nn.Linear(self.backbone_dim, features_dim) elif head == 'mlp': self.contrastive_head = nn.Sequential( nn.Linear(self.backbone_dim, self.backbone_dim), nn.ReLU(), nn.Linear(self.backbone_dim, features_dim)) else: raise ValueError('Invalid head {}'.format(head)) def forward(self, x): features = self.contrastive_head(self.backbone(x)) features = F.normalize(features, dim = 1) return features class ClusteringModel(nn.Module): def __init__(self, backbone, nclusters, nheads=1): super(ClusteringModel, self).__init__() self.backbone = backbone['backbone'] self.backbone_dim = backbone['dim'] self.nheads = nheads assert(isinstance(self.nheads, int)) assert(self.nheads > 0) self.cluster_head = nn.ModuleList([nn.Linear(self.backbone_dim, nclusters) for _ in range(self.nheads)]) def forward(self, x, forward_pass='default'): if forward_pass == 'default': features = self.backbone(x) out = [cluster_head(features) for cluster_head in self.cluster_head] elif forward_pass == 'backbone': out = self.backbone(x) elif forward_pass == 'head': out = [cluster_head(x) for cluster_head in self.cluster_head] elif forward_pass == 'return_all': features = self.backbone(x) out = {'features': features, 'output': [cluster_head(features) for cluster_head in self.cluster_head]} else: raise ValueError('Invalid forward pass {}'.format(forward_pass)) return out,这是什么模型啊
时间: 2024-04-28 13:20:29 浏览: 151
ssh_full.zip_AOP java_aop_backbone jsp_backbone struts_ssh
这个代码定义了两个模型:`ContrastiveModel` 和 `ClusteringModel`。
`ContrastiveModel` 是一个对比学习模型,用于训练图像特征。它接收一个 backbone 模型作为输入,该 backbone 模型提取输入图像的特征,然后通过一个 MLP 或 Linear 层将特征映射到一个固定维度的向量。最后,它对向量进行 L2 归一化,以获得最终的特征表示。该模型的作用是通过对比学习的方式,学习到图像的特征表示,以便用于其他任务,如分类、检索等。
`ClusteringModel` 是一个聚类模型,用于无监督图像分类。它接收一个 backbone 模型作为输入,该 backbone 模型提取输入图像的特征,然后通过一个线性层将特征映射到一个固定维度的向量,并将向量输入到多个聚类头(cluster_head)中。每个聚类头都是一个线性层,用于将特征向量映射到类别概率分布。该模型的作用是通过聚类的方式,将图像分为不同的类别,以便用于其他任务,如分类、检索等。
阅读全文