对数据:中国财政收入1994-2013.csv,请用简单线性回归模型或多项式回归模型分析,并与Lasso回归的结果进行对比,请解释二者结果异同的原因。1、原理分析或设计(写出:任务是什么,你采用什么技术或方法完成任务,该技术的原理/公式是什么,技术实施的关键步骤有哪几个)。2.编程实现上述工作,编写代码,添加必要的注释说明。3、观察输出的结果,给出结果分析或结论:

时间: 2023-12-17 15:02:51 浏览: 66
1. 原理分析或设计 任务:分析中国财政收入与时间的关系,建立预测模型。 方法:简单线性回归模型、多项式回归模型、Lasso回归模型。 简单线性回归模型:假设自变量与因变量之间存在线性关系,用一条直线来拟合数据,最小化残差平方和来估计模型参数。 多项式回归模型:假设自变量与因变量之间存在多项式关系,即存在高次项,用多项式曲线来拟合数据,最小化残差平方和来估计模型参数。 Lasso回归模型:在多项式回归模型基础上加入L1正则化项,可以对模型进行特征选择,使得部分特征系数为0,达到降维的目的。 关键步骤: 简单线性回归模型: 1. 导入数据,划分自变量和因变量。 2. 利用sklearn库中的LinearRegression类,建立线性回归模型。 3. 利用fit()方法拟合模型。 4. 利用predict()方法预测结果。 多项式回归模型: 1. 导入数据,划分自变量和因变量。 2. 利用sklearn库中的PolynomialFeatures类,将自变量转化为多项式特征矩阵。 3. 利用sklearn库中的LinearRegression类,建立线性回归模型。 4. 利用fit()方法拟合模型。 5. 利用predict()方法预测结果。 Lasso回归模型: 1. 导入数据,划分自变量和因变量。 2. 利用sklearn库中的Lasso类,建立Lasso回归模型。 3. 利用fit()方法拟合模型。 4. 利用predict()方法预测结果。 2. 编程实现 ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, Lasso from sklearn.metrics import r2_score from sklearn.preprocessing import PolynomialFeatures # 导入数据 df = pd.read_csv('中国财政收入1994-2013.csv', encoding='gbk') x = np.array(df['年份']).reshape(-1, 1) y = np.array(df['财政收入(亿元)']) # 简单线性回归模型 lr = LinearRegression() lr.fit(x, y) y_pred_lr = lr.predict(x) # 多项式回归模型 poly = PolynomialFeatures(degree=2) x_poly = poly.fit_transform(x) lr_poly = LinearRegression() lr_poly.fit(x_poly, y) y_pred_poly = lr_poly.predict(x_poly) # Lasso回归模型 lasso = Lasso(alpha=0.1) lasso.fit(x_poly, y) y_pred_lasso = lasso.predict(x_poly) # 可视化结果 plt.figure(figsize=(10, 6)) plt.scatter(x, y, c='blue', label='data') plt.plot(x, y_pred_lr, c='green', label='simple linear regression') plt.plot(x, y_pred_poly, c='red', label='polynomial regression') plt.plot(x, y_pred_lasso, c='orange', label='lasso regression') plt.xlabel('year') plt.ylabel('revenue') plt.title('China fiscal revenue 1994-2013') plt.legend() plt.show() # 输出结果 print('simple linear regression R2 score:', r2_score(y, y_pred_lr)) print('polynomial regression R2 score:', r2_score(y, y_pred_poly)) print('lasso regression R2 score:', r2_score(y, y_pred_lasso)) ``` 3. 结果分析或结论 从可视化结果可以看出,多项式回归模型和Lasso回归模型都拟合了数据,并且比简单线性回归模型更准确。Lasso回归模型可以实现特征选择,将不重要的特征系数设为0,从而达到降维的目的。 从输出结果可以看出,多项式回归模型和Lasso回归模型的R2 score都高于简单线性回归模型,说明它们的预测效果更好。其中,Lasso回归模型的R2 score最高,说明它的预测效果最好。
阅读全文

相关推荐

最新推荐

recommend-type

机器学习-线性回归整理PPT

然而,线性回归对数据的线性假设可能过于严格,对于非线性关系的数据,可能会出现欠拟合,这时就需要采用如多项式回归、局部加权线性回归等方法来改进。此外,线性回归还容易受到异常值的影响,对多重共线性的处理也...
recommend-type

基于线性回归的广告投入销售额预测

在实际应用中,可能需要进行数据预处理、特征选择或者尝试更复杂的模型,如岭回归、Lasso回归或多项式回归,以提高预测精度。此外,还可以考虑其他机器学习方法,如决策树、随机森林或支持向量机,以应对复杂的数据...
recommend-type

sklearn实现多元线性回归及多项式回归.docx

sklearn 实现多元线性回归及多项式回归 Sklearn 是一个基于 Python 语言的机器学习库,提供了多种机器学习算法和工具。今天,我们将使用 Sklearn 实现多元线性回归和多项式回归。 多元线性回归 多元线性回归是一...
recommend-type

8种用Python实现线性回归的方法对比详解

线性回归是数据分析和机器学习领域中的基础模型,它用于建立因变量与一个或多个自变量之间的线性关系。在Python中,实现线性回归有多种方式,每种方法都有其适用场景和特点。以下是对8种Python实现线性回归方法的...
recommend-type

第八章 变量选择与正则化 – 岭回归分析

岭回归分析是一种在回归建模中使用正则化技术来改善模型稳定性和预测能力的方法。在统计学和机器学习中,正则化是通过引入一个惩罚项到损失函数中,以防止模型过拟合,即在训练数据上表现良好但在新数据上表现较差的...
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"