wordlist2 = jieba.cut(sent)得出的wordlist2 是什么类型的数据
时间: 2023-06-10 10:04:47 浏览: 61
?你的第一个问题是:wordlist2 = jieba.cut(sent)得出的wordlist2 是什么类型的数据?
回答:wordlist2 是一个可迭代的生成器类型的数据,其中包含了分词后得到的所有单词。
相关问题
wordlist2 = jieba.cut(sent) print(' '.join(wordlist2))中.join是什么意思
.join 是一个字符串方法,它可以将一个可迭代对象中的每个元素连接成一个字符串,连接时可以指定一个分隔符。在这个例子中,通过.join方法将wordlist2中的词语连接成一个字符串,每个词语之间用空格分隔。
#加载模块 import csv import os import re import jieba import pandas as pd #设置读取情感词典的函数 def read_dict(file): my_dict=open(file).read() wordlist=re.findall(r'[\u4e00-\u9fa5]+',my_dict) return wordlist positive=read_dict('C:/Users/xiaomei/Desktop/reports/positive.txt') negative=read_dict('C:/Users/xiaomei/Desktop/reports/negative.txt') #读取csv文件,并进行处理 results={} with open('C:/Users/xiaomei/Desktop/report.csv', 'r', encoding='utf-8') as f: reader=csv.reader(f) for row in reader: text=row[2] text=re.sub(r'[^\u4e00-\u9fa5]+',' ',text) words=jieba.cut(text) #自定义情感分析函数 def senti_count(text): wordlist1=jieba.lcut(text) wordlist1=[w for w in wordlist1 if len(w)>1] positive_count=0 for positive_word in positive: positive_count=positive_count+wordlist1.count(positive_word) negative_count=0 for negative_word in negative: negative_count=negative_count+wordlist1.count(negative_word) return {'word_num':len(wordlist1),'positive_num':positive_count,'negative_num':negative_count} #生成保存路径 csvf=open('C:/Users/xiaomei/Desktop/情感分析.csv','w',encoding = 'gbk',newline = '') writer=csv.writer(csvf) writer.writerow(('公司名称','年份','总词汇数','正面情感词汇数','负面情感词汇数')) senti_score=senti_count(text) word_num = senti_score['word_num'] positive_num = senti_score['positive_num'] negative_num = senti_score['negative_num'] writer.writerow((company,year,word_num,positive_num,negative_num)) csvf.close()
这段代码是一个简单的情感分析脚本,读取指定路径下的CSV文件,提取每行的文本内容,进行中文分词,再统计文本中正面和负面情感词汇的数量,并将结果保存到新的CSV文件中。
其中,使用了jieba库进行中文分词,使用了正则表达式对文本进行预处理,过滤掉非中文字符。read_dict函数用于读取情感词典文件,返回情感词汇列表。senti_count函数用于计算文本中的正面和负面情感词汇数量,返回一个字典类型的结果。在主函数中,使用csv.reader逐行读取CSV文件,对每行文本调用senti_count函数计算情感得分,并将结果写入新的CSV文件中。
需要注意的是,在写入CSV文件时,应该使用正确的编码格式,如GBK或UTF-8,避免出现乱码。同时,为了避免文件写入错误,应该在写入完毕后关闭文件句柄。
阅读全文