plt.figure() plt.bar(pixels,c) plt.figure() plt.hist(src_for_hist, bins=255, density=1) plt.show()
时间: 2023-12-15 17:43:26 浏览: 88
这段代码是用来绘制柱状图和直方图,并在两个不同的图形窗口中显示出来。
首先,使用plt.figure()创建第一个图形窗口。然后,使用plt.bar()函数绘制柱状图,其中pixels是柱状图的x轴数据,c是柱状图的高度数据。这段代码会将柱状图绘制在第一个图形窗口中。
接着,使用plt.figure()创建第二个图形窗口。然后,使用plt.hist()函数绘制直方图,其中src_for_hist是直方图的数据,bins参数指定了直方图的柱子数量,density参数设置为1表示将直方图归一化为概率密度函数。这段代码会将直方图绘制在第二个图形窗口中。
最后,使用plt.show()将两个图形窗口显示出来。
相关问题
fig = plt.figure(figsize=[5,5],dpi=300) h=plt.hist2d(df['下行用户平均速率(Mbit/s)'], df['下行PRB平均利用率(%)'], bins=40,cmap=plt.cm.Spectral_r,cmin =1) ax=plt.gca() ax.set_xlabel('下行用户平均速率(Mbit/s)') ax.set_ylabel('下行PRB平均利用率(%)') cbar=plt.colorbar(h[3]) cbar.set_label('count') # Display the plot plt.tight_layout() plt.savefig('./bin-plot1.tiff', dpi=600, bbox_inches = 'tight', facecolor='w') plt.show() 这段代码是什么意思
这段代码使用Python的matplotlib库绘制了一个二维直方图。具体来说,代码中的`plt.hist2d()`函数用于计算并绘制二维直方图,其中`df['下行用户平均速率(Mbit/s)']`和`df['下行PRB平均利用率(%)']`是要绘制的数据,`bins=40`指定了直方图的箱子数,`cmap=plt.cm.Spectral_r`指定了使用的颜色映射,`cmin=1`指定了最小计数,即只绘制计数大于等于1的数据点。
接下来,代码使用`plt.gca()`获取当前的图形轴对象,并使用`ax.set_xlabel()`和`ax.set_ylabel()`设置x轴和y轴的标签。
然后,代码使用`plt.colorbar()`添加一个颜色条,并使用`cbar.set_label()`设置颜色条的标签。
最后,代码使用`plt.tight_layout()`调整子图布局以避免重叠,并使用`plt.savefig()`保存图形为tiff格式的文件,dpi参数指定了图形的分辨率,bbox_inches参数指定了要保存的部分,facecolor参数指定了图形的背景色,最后使用`plt.show()`显示图形。
import numpy as np import matplotlib.pyplot as plt # 读入灰度图像并显示 img = plt.imread('image.jpg') plt.imshow(img, cmap='gray') plt.show() # 统计直方图并用柱状图显示 hist, bins = np.histogram(img.flatten(), 256, [0, 256]) plt.bar(bins[:-1], hist, width=1) plt.show() # 均衡化图像并显示 cdf = hist.cumsum() cdf_normalized = cdf / cdf.max() img_equalized = np.interp(img.flatten(), bins[:-1], cdf_normalized) img_equalized = img_equalized.reshape(img.shape) plt.imshow(img_equalized, cmap='gray') plt.show() # 统计均衡化后的直方图并用柱状图显示 hist_equalized, bins_equalized = np.histogram(img_equalized.flatten(), 256, [0, 256]) plt.bar(bins_equalized[:-1], hist_equalized, width=1) plt.show()实验中的关键点、难点、实验参数对于结果的影响
实验中的关键点是理解直方图均衡化的原理和算法,并掌握 Python 中相关的库函数和操作方法。
难点在于如何理解和实现直方图均衡化的算法,以及如何通过 Python 代码实现直方图统计和可视化。
实验参数对结果的影响主要是 bin 数量的选择,不同的 bin 数量可能会导致不同的均衡化效果。在实验中,使用了 256 个 bin,这可以适用于大多数图像,但对于某些特定的图像可能需要更多或更少的 bin 来获得更好的均衡化效果。
此外,对于图像的预处理和显示也会影响最终结果的质量,如图像的大小、采样率、压缩比等。在实验中,使用了 Matplotlib 库中的 `imread()` 和 `imshow()` 函数来读取和显示图像,这些函数提供了一些参数选项来控制图像的显示效果,如 cmap、interpolation 等。
阅读全文